Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ena.lp.edu.ua:8080/handle/ntb/52473
Назва: Shape Evolutions of Poincaré Plots for Electromyograms in Data Acquisition Dynamics
Автори: Chuiko, Gennady
Dvornik, Olga
Darnapuk, Yevhen
Приналежність: Petro Mohyla Black Sea National University
Бібліографічний опис: Chuiko G. Shape Evolutions of Poincaré Plots for Electromyograms in Data Acquisition Dynamics / Gennady Chuiko, Olga Dvornik, Yevhen Darnapuk // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 119–122. — (Dynamic Data Mining & Data Stream Mining).
Bibliographic description: Chuiko G. Shape Evolutions of Poincaré Plots for Electromyograms in Data Acquisition Dynamics / Gennady Chuiko, Olga Dvornik, Yevhen Darnapuk // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 119–122. — (Dynamic Data Mining & Data Stream Mining).
Є частиною видання: Data stream mining and processing : proceedings of the IEEE second international conference, 2018
Конференція/захід: IEEE second international conference "Data stream mining and processing"
Дата публікації: 28-лют-2018
Видавництво: Lviv Politechnic Publishing House
Місце видання, проведення: Львів
Часове охоплення: 21-25 August 2018, Lviv
Теми: data acquisition dynamics
Poincaré Plots
variability
electromyograms
medical signals
Кількість сторінок: 4
Діапазон сторінок: 119-122
Початкова сторінка: 119
Кінцева сторінка: 122
Короткий огляд (реферат): Poincaré plots (PPs) are a known way of study for complex time series. Such are the majority of medical signals. This method is in use here for the study of verified electromyograms (EMGs). EMGs are records of electrical action of muscular and nervous systems. The shapes of PPs for EMGs as well as its standard descriptors are sensitive to the diagnosis. These last describe the variability of the signals. We have studied the changes in the shapes of the PPs during the taping of EMGs. The changes of the standard descriptors were studied too. Three EMGs were considered for diverse diagnoses. They have varied duration but the same sampling rates. We have found the common shape of the PPs stabilizes itself during about the first third of each record. These shapes can change even further, but already remaining self-similar like the fractals. Standard descriptors are changing within the data acquisition. Still, these changes are smoother and less weighty in the last two thirds of each record.
URI (Уніфікований ідентифікатор ресурсу): http://ena.lp.edu.ua:8080/handle/ntb/52473
ISBN: © Національний університет „Львівська політехніка“, 2018
© Національний університет „Львівська політехніка“, 2018
Власник авторського права: © Національний університет “Львівська політехніка”, 2018
URL-посилання пов’язаного матеріалу: http://biofbe.esrae.ru/pdf/2015/3/1006.pdf
https://www.physionet.org/physiobank/database/emgdb/
https://files.btlnet.com/product-document/9792e3d5-3dbf45d8-9e84-5c964a6a8602/BTL-Cardiopoint_WP_Poincaré
https://www.wolfram.com/mathematica/comparemathematica/files/ReviewOfMaple18.pdf
http://paulbourke.net/fractals/cubecount/
http://pmkvestnik.tversu.ru/issues/2014-3/vestnik-pmk-2014-3-kudinov.pdf
Перелік літератури: [1] K.R. Mills, “The basics of electromyography”, J. Neurol. Neurosurg. Psychiatry, vol. 76, pp. ii32-ii35, 2005. DOI: 10.1136/jnnp.2005.069211.
[2] M.B.I. Reaz, M.S. Hussain, F. Mohd-Yasin, “Techniques of EMG signal analysis: detection, processing, classification and applications”, Biol. Proced. Online, vol. 8, pp. 11-35, 2006. DOI: 10.1251/bpo115.
[3] G.P. Chuiko, I.A. Shyian, “Processing and analysis of electroneuromygrams with Maple tools”, Biomedical engineering and electronics. [Online]. n. 10, pp. 1-8, 2015. Available: http://biofbe.esrae.ru/pdf/2015/3/1006.pdf .
[4] Examples of Electromyograms. [Online]. Available: https://www.physionet.org/physiobank/database/emgdb/. DOI: 10.13026/C24S3D.
[5] A. Kitlas-Golińska, “Poincaré Plots in Analysis of Selected Biomedical Signals”, Studies in Logic, Grammar and Rhetoric, vol. 35, pp. 117–127, 2013. DOI: 10.2478/slgr-2013-0031.
[6] R.A. Hoshi, C.M. Pastre, L.C.M. Vanderlei, M.F. Godoy, “Poincaré plot indexes of heart rate variability: Relationships with other nonlinear variables”, Auton. Neurosci. Basic Clin., vol. 177, pp. 271–274, 2013. DOI: 10.1016/j.autneu.2013.05.004.
[7] M.P. Tulppo, T.H. Makikallio, T.E. Takala, T. Seppanen, H.V. Huikuri, “Quantitative beat-to-beat analysis of heart rate dynamics during exercise”, Am. J. Physiol., vol. 271, pp. H244-H252, 1996. DOI: 10.1152/ajpheart.1996.271.1.H244.
[8] Poincaré Graph. BTL Cardiopoint-Poincaré graph. [Online]. Available: https://files.btlnet.com/product-document/9792e3d5-3dbf45d8-9e84-5c964a6a8602/BTL-Cardiopoint_WP_Poincaré -graph_EN400_9792e3d5-3dbf-45d8-9e84-5c964a6a8602_original.pdf .
[9] Review of New Features in Maple 18. [Online]. Available: https://www.wolfram.com/mathematica/comparemathematica/files/ReviewOfMaple18.pdf .
[10] G.P. Chuiko, D.A. Galyak, I.A. Shyian, “Interface elements of scientific Web-resource PhysioNet and import data to computer mathematics system Maple 17”, Medical Informatics and Engineering, vol. 3, pp. 84-88, 2015. DOI: 10.11603/mie.1996-1960.2015.3.5008.
[11] J. Piskorski, P. Guzik, “Filtering Poincaré plot”, Comput. Methods Sci. Thechnology, vol. 11, pp. 39-48, 2005. DOI: 10.12921/cmst.2005.11.01.39-48.
[12] B. Mandelbrot, “How Long Is the Coast of Britain? Statistical SelfSimilarity and Fractional Dimension”, Science, vol. 156, pp. 636-638, 1967. DOI: 10.1126/science.156.3775.636.
[13] P. Bourke, “Box counting fractal dimension of volumetric data”. [Online]. Available: http://paulbourke.net/fractals/cubecount/ .
[14] A.N. Kudinov, D.Y. Lebedev, V.N. Ryrzykov, V.P. Zvetkov, I.V. Zvetkov, A.P. Ivanov, “Self-similarity of the scatter plot of instantaneous heart rhythm”, Vestnik TvGU. Seriya: Prikladnaya matematika [Herald of Tver State University. Series: Applied Mathematics], n. 3, pp. 105-115, 2014. Available: http://pmkvestnik.tversu.ru/issues/2014-3/vestnik-pmk-2014-3-kudinov.pdf (in Russian).
References: [1] K.R. Mills, "The basics of electromyography", J. Neurol. Neurosurg. Psychiatry, vol. 76, pp. ii32-ii35, 2005. DOI: 10.1136/jnnp.2005.069211.
[2] M.B.I. Reaz, M.S. Hussain, F. Mohd-Yasin, "Techniques of EMG signal analysis: detection, processing, classification and applications", Biol. Proced. Online, vol. 8, pp. 11-35, 2006. DOI: 10.1251/bpo115.
[3] G.P. Chuiko, I.A. Shyian, "Processing and analysis of electroneuromygrams with Maple tools", Biomedical engineering and electronics. [Online]. n. 10, pp. 1-8, 2015. Available: http://biofbe.esrae.ru/pdf/2015/3/1006.pdf .
[4] Examples of Electromyograms. [Online]. Available: https://www.physionet.org/physiobank/database/emgdb/. DOI: 10.13026/P.24S3D.
[5] A. Kitlas-Golińska, "Poincaré Plots in Analysis of Selected Biomedical Signals", Studies in Logic, Grammar and Rhetoric, vol. 35, pp. 117–127, 2013. DOI: 10.2478/slgr-2013-0031.
[6] R.A. Hoshi, C.M. Pastre, L.C.M. Vanderlei, M.F. Godoy, "Poincaré plot indexes of heart rate variability: Relationships with other nonlinear variables", Auton. Neurosci. Basic Clin., vol. 177, pp. 271–274, 2013. DOI: 10.1016/j.autneu.2013.05.004.
[7] M.P. Tulppo, T.H. Makikallio, T.E. Takala, T. Seppanen, H.V. Huikuri, "Quantitative beat-to-beat analysis of heart rate dynamics during exercise", Am. J. Physiol., vol. 271, pp. H244-H252, 1996. DOI: 10.1152/ajpheart.1996.271.1.H244.
[8] Poincaré Graph. BTL Cardiopoint-Poincaré graph. [Online]. Available: https://files.btlnet.com/product-document/9792e3d5-3dbf45d8-9e84-5c964a6a8602/BTL-Cardiopoint_WP_Poincaré -graph_EN400_9792e3d5-3dbf-45d8-9e84-5c964a6a8602_original.pdf .
[9] Review of New Features in Maple 18. [Online]. Available: https://www.wolfram.com/mathematica/comparemathematica/files/ReviewOfMaple18.pdf .
[10] G.P. Chuiko, D.A. Galyak, I.A. Shyian, "Interface elements of scientific Web-resource PhysioNet and import data to computer mathematics system Maple 17", Medical Informatics and Engineering, vol. 3, pp. 84-88, 2015. DOI: 10.11603/mie.1996-1960.2015.3.5008.
[11] J. Piskorski, P. Guzik, "Filtering Poincaré plot", Comput. Methods Sci. Thechnology, vol. 11, pp. 39-48, 2005. DOI: 10.12921/cmst.2005.11.01.39-48.
[12] B. Mandelbrot, "How Long Is the Coast of Britain? Statistical SelfSimilarity and Fractional Dimension", Science, vol. 156, pp. 636-638, 1967. DOI: 10.1126/science.156.3775.636.
[13] P. Bourke, "Box counting fractal dimension of volumetric data". [Online]. Available: http://paulbourke.net/fractals/cubecount/ .
[14] A.N. Kudinov, D.Y. Lebedev, V.N. Ryrzykov, V.P. Zvetkov, I.V. Zvetkov, A.P. Ivanov, "Self-similarity of the scatter plot of instantaneous heart rhythm", Vestnik TvGU. Seriya: Prikladnaya matematika [Herald of Tver State University. Series: Applied Mathematics], n. 3, pp. 105-115, 2014. Available: http://pmkvestnik.tversu.ru/issues/2014-3/vestnik-pmk-2014-3-kudinov.pdf (in Russian).
Тип вмісту : Conference Abstract
Розташовується у зібраннях:Data stream mining and processing : proceedings of the IEEE second international conference



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.