The Wayback Machine - https://web.archive.org/web/20180202080004/http://cloudcomputing.sys-con.com/node/4151910

Welcome!

@CloudExpo Authors: Dalibor Siroky, Valeriia Timokhina, Stackify Blog, Destiny Bertucci, Elizabeth White

Related Topics: @CloudExpo, Java IoT, Open Source Cloud, Containers Expo Blog

@CloudExpo: Article

Finally Getting the Most out of the Java Thread Pool | @CloudExpo #JVM #Java #Cloud

Thread pool is a core concept in multithreaded programming that represents a collection of idle threads used to execute tasks

Finally Getting the Most out of the Java Thread Pool
By Eugen Paraschiv

First, let's outline a frame of reference for multithreading and why we may need to use a thread pool.

A thread is an execution context that can run a set of instructions within a process - aka a running program. Multithreaded programming refers to using threads to execute multiple tasks concurrently. Of course, this paradigm is well supported on the JVM.

Although this brings several advantages, primarily regarding the performance of a program, multithreaded programming can also have disadvantages - such as increased complexity of the code, concurrency issues, unexpected results and adding the overhead of thread creation.

In this article, we're going to take a closer look at how the latter issue can be mitigated by using thread pools in Java.

Why Use a Thread Pool?
Creating and starting a thread can be an expensive process. By repeating this process every time we need to execute a task, we're incurring a significant performance cost - which is exactly what we were attempting to improve by using threads.

For a better understanding of the cost of creating and starting a thread, let's see what the JVM actually does behind the scenes:

  • It allocates memory for a thread stack that holds a frame for every thread method invocation
  • Each frame consists of a local variable array, return value, operand stack and constant pool
  • Some JVMs that support native methods also allocate a native stack
  • Each thread gets a program counter that tells it what the current instruction executed by the processor is
  • The system creates a native thread corresponding to the Java thread
  • Descriptors relating to the thread are added to the JVM internal data structures
  • The threads share the heap and method area

Of course, the details of all this will depend on the JMV and the operating system.

In addition, more threads mean more work for the system scheduler to decide which thread gets access to resources next.

A thread pool helps mitigate the issue of performance by reducing the number of threads needed and managing their lifecycle.
Essentially, threads are kept in the thread pool until they're needed, after which they execute the task and return the pool to be reused later. This mechanism is especially helpful in systems that execute a large number of small tasks.

Java Thread Pools
Java provides its own implementations of the thread pool pattern, through objects called executors. These can be used through executor interfaces or directly through thread pool implementations - which does allow for finer-grained control.

The java.util.concurrent package contains the following interfaces:

  • Executor - a simple interface for executing tasks
  • ExecutorService - a more complex interface which contains additional methods for managing the tasks and the executor itself
  • ScheduledExecutorService - extends ExecutorService with methods for scheduling the execution of a task

Alongside these interfaces, the package also provides the Executors helper class for obtaining executor instances, as well as implementations for these interfaces.

Generally, a Java thread pool is composed of:

  • The pool of worker threads, responsible for managing the threads
  • A thread factory that is responsible for creating new threads
  • A queue of tasks waiting to be executed

In the following sections, let's see how the Java classes and interfaces that provide support for thread pools work in more detail.

The Executors class and Executor interface
The Executors class contains factory methods for creating different types of thread pools, while Executor is the simplest thread pool interface, with a single execute() method.

Let's use these two classes in conjunction with an example that creates a single-thread pool, then uses it to execute a simple statement:

Executor executor = Executors.newSingleThreadExecutor();
executor.execute(() -> System.out.println("Single thread pool test"));

Notice how the statement can be written as a lambda expression - which is inferred to be of Runnable type.

The execute() method runs the statement if a worker thread is available, or places the Runnable task in a queue to wait for a thread to become available.

Basically, the executor replaces the explicit creation and management of a thread.

The factory methods in the Executors class can create several types of thread pools:

  • newSingleThreadExecutor() - a thread pool with only one thread with an unbounded queue, which only executes one task at a time
  • newFixedThreadPool() - a thread pool with a fixed number of threads which share an unbounded queue; if all threads are active when a new task is submitted, they will wait in queue until a thread becomes available
  • newCachedThreadPool() - a thread pool that creates new threads as they are needed
  • newWorkStealingThreadPool() - a thread pool based on a "work-stealing" algorithm which will be detailed more in a later section

Next, let's take a look into what additional capabilities the ExecutorService interface.

The ExecutorService
One way to create an ExecutorService is to use the factory methods from the Executors class:

ExecutorService executor = Executors.newFixedThreadPool(10);

Besides the execute() method, this interface also defines a similar submit() method that can return a Future object:

Callable<Double> callableTask = () -> {
return employeeService.calculateBonus(employee);
};
Future<Double> future = executor.submit(callableTask);
// execute other operations
try {
if (future.isDone()) {
double result = future.get();
}
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}

As you can see in the example above, the Future interface can return the result of a task for Callable objects, and can also show the status of a task execution.

The ExecutorService is not automatically destroyed when there are no tasks waiting to be executed, so to shut it down explicitly, you can use the shutdown() or shutdownNow() APIs:

executor.shutdown();

The ScheduledExecutorService
This is a subinterface of ExecutorService - which adds methods for scheduling tasks:

ScheduledExecutorService executor = Executors.newScheduledThreadPool(10);

The schedule() method specifies a task to be executed, a delay value and a TimeUnit for the value:

Future<Double> future = executor.schedule(callableTask, 2, TimeUnit.MILLISECONDS);

Furthermore, the interface defines two additional methods:

executor.scheduleAtFixedRate(
() -> System.out.println("Fixed Rate Scheduled"), 2, 2000, TimeUnit.MILLISECONDS);

executor.scheduleWithFixedDelay(
() -> System.out.println("Fixed Delay Scheduled"), 2, 2000, TimeUnit.MILLISECONDS);

The scheduleAtFixedRate() method executes the task after 2 ms delay, then repeats it at every 2 seconds. Similarly, the scheduleWithFixedDelay() method starts the first execution after 2 ms, then repeats the task 2 seconds after the previous execution ends.

In the following sections, let's also go through two implementations of the ExecutorService interface: ThreadPoolExecutor and ForkJoinPool.

The ThreadPoolExecutor
This thread pool implementation adds the ability to configure parameters
, as well as extensibility hooks. The most convenient way to create a ThreadPoolExecutor object is by using the Executors factory methods:

ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(10);

In this manner, the thread pool is preconfigured for the most common cases. The number of threads can be controlled by setting the parameters:

  • corePoolSize and maximumPoolSize - which represent the bounds of the number of threads
  • keepAliveTime - which determines the time to keep extra threads alive

Digging a bit further, here's how these parameters are used.

If a task is submitted and fewer than corePoolSize threads are in execution, then a new thread is created. The same thing happens if there are more than corePoolSize but less than maximumPoolSize threads running, and the task queue is full. If there are more than corePoolSize threads which have been idle for longer than keepAliveTime, they will be terminated.

In the example above, the newFixedThreadPool() method creates a thread pool with corePoolSize=maximumPoolSize=10, and a keepAliveTime of 0 seconds.

If you use the newCachedThreadPool() method instead, this will create a thread pool with a maximumPoolSize of Integer.MAX_VALUE and a keepAliveTime of 60 seconds:

ThreadPoolExecutor cachedPoolExecutor
= (ThreadPoolExecutor) Executors.newCachedThreadPool();

The parameters can also be set through a constructor or through setter methods:

ThreadPoolExecutor executor = new ThreadPoolExecutor(
4, 6, 60, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>()
);
executor.setMaximumPoolSize(8);

A subclass of ThreadPoolExecutor is the ScheduledThreadPoolExecutor class, which implements the ScheduledExecutorService interface. You can create this type of thread pool by using the newScheduledThreadPool() factory method:

ScheduledThreadPoolExecutor executor
= (ScheduledThreadPoolExecutor) Executors.newScheduledThreadPool(5);

This creates a thread pool with a corePoolSize of 5, an unbounded maximumPoolSize and a keepAliveTime of 0 seconds.

The ForkJoinPool
Another implementation of a thread pool is the ForkJoinPool class. This implements the ExecutorService interface and represents the central component of the fork/join framework introduced in Java 7.

The fork/join framework is based on a "work-stealing algorithm". In simple terms, what this means is that threads that run out of tasks can "steal" work from other busy threads.

A ForkJoinPool is well suited for cases when most tasks create other subtasks or when many small tasks are added to the pool from external clients.

The workflow for using this thread pool typically looks something like this:

  • create a ForkJoinTask subclass
  • split the tasks into subtasks according to a condition
  • invoke the tasks
  • join the results of each task
  • create an instance of the class and add it to the pool

To create a ForkJoinTask, you can choose one of its more commonly used subclasses, RecursiveAction or RecursiveTask - if you need to return a result.

Let's implement an example of a class that extends RecursiveTask and calculates the factorial of a number by splitting it into subtasks depending on a THRESHOLD value:

public class FactorialTask extends RecursiveTask<BigInteger> {
private int start = 1;
private int n;
private static final int THRESHOLD = 20;

// standard constructors

@Override
protected BigInteger compute() {
if ((n - start) >= THRESHOLD) {
return ForkJoinTask.invokeAll(createSubtasks())
.stream()
.map(ForkJoinTask::join)
.reduce(BigInteger.ONE, BigInteger::multiply);
} else {
return calculate(start, n);
}
}
}

The main method that this class needs to implement is the overridden compute() method, which joins the result of each subtask.

The actual splitting is done in the createSubtasks() method:

private Collection<FactorialTask> createSubtasks() {
List<FactorialTask> dividedTasks = new ArrayList<>();
int mid = (start + n) / 2;
dividedTasks.add(new FactorialTask(start, mid));
dividedTasks.add(new FactorialTask(mid + 1, n));
return dividedTasks;
}

Finally, the calculate() method contains the multiplication of values in a range:

private BigInteger calculate(int start, int n) {
return IntStream.rangeClosed(start, n)
.mapToObj(BigInteger::valueOf)
.reduce(BigInteger.ONE, BigInteger::multiply);
}

Next, tasks can be added to a thread pool:

ForkJoinPool pool = ForkJoinPool.commonPool();
BigInteger result = pool.invoke(new FactorialTask(100));

ThreadPoolExecutor vs. ForkJoinPool
At first look, it seems that the fork/join framework brings improved performance. However, this may not always be the case depending on the type of problem you need to solve.

When choosing a thread pool, it's important to also remember there is overhead caused by creating and managing threads and switching execution from one thread to another.

The ThreadPoolExecutor provides more control over the number of threads and the tasks that are executed by each thread. This makes it more suitable for cases when you have a smaller number of larger tasks that are executed on their own threads.

By comparison, the ForkJoinPool is based on threads "stealing" tasks from other threads. Because of this, it is best used to speed up work in cases when tasks can be broken up into smaller tasks.

To implement the work-stealing algorithm, the fork/join framework uses two types of queues:

  • A central queue for all tasks
  • A task queue for each thread

When threads run out of tasks in their own queues, they attempt to take tasks from the other queues. To make the process more efficient, the thread queue uses a deque (double ended queue) data structure, with threads being added at one end and "stolen" from the other end.

Here is a good visual representation of this process from The H Developer:

fork/join thread pool

In contrast with this model, the ThreadPoolExecutor uses only one central queue.

One last thing to remember is that the choosing a ForkJoinPool is only useful if the tasks create subtasks. Otherwise, it will function the same as a ThreadPoolExecutor, but with extra overhead.

Tracing Thread Pool Execution
Now that we have a good foundational understanding of the Java thread pool ecosystem, let's take a closer look at what happens during the execution of an application that uses a thread pool.

By adding some logging statements in the constructor of FactorialTask and the calculate() method, you can follow the invocation sequence:

13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created 13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - Calculate factorial from 1 to 13
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-2] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-2] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - Calculate factorial from 51 to 63
13:07:33.123 [ForkJoinPool.commonPool-worker-2] INFO ROOT - Calculate factorial from 76 to 88
13:07:33.123 [ForkJoinPool.commonPool-worker-3] INFO ROOT - Calculate factorial from 64 to 75
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - New FactorialTask Created
13:07:33.163 [main] INFO ROOT - Calculate factorial from 14 to 25
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - New FactorialTask Created
13:07:33.163 [ForkJoinPool.commonPool-worker-2] INFO ROOT - Calculate factorial from 89 to 100
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - Calculate factorial from 26 to 38
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - Calculate factorial from 39 to 50

Here you can see there are several tasks created, but only 3 worker threads - so these get picked up by the available threads in the pool.

Also notice how the objects themselves are actually created in the main thread, before being passed to the pool for execution.

This is actually a great way to explore and understand thread pools at runtime, with the help of a solid logging visualization tool such as Prefix.

The core aspect of logging from a thread pool is to make sure the thread name is easily identifiable in the log message; Log4J2 is a great way to do that by making good use of layouts for example.

Potential Risks of Using a Thread Pool
Although thread pools provide significant advantages, you can also encounter several problems while using one, such as:

  • Using a thread pool that is too large or too small - if the thread pool contains too many threads, this can significantly affect the performance of the application; on the other hand, a thread pool that is too small may not bring the performance gain that you would expect
  • Deadlock can happen just like in any other multi-threading situation; for example, a task may be waiting for another task to complete, with no available threads for this latter one to execute; that's why it's usually a good idea to avoid dependencies between tasks
  • Queuing a very long task - to avoid blocking a thread for too long, you can specify a maximum wait time after which the task is rejected or re-added to the queue

To mitigate these risks, you have to choose the thread pool type and parameters carefully, according to the tasks that they will handle. Stress-testing your system is also well-worth it to get some real-world data of how your thread pool behaves under load.

Conclusion
Thread pools provide a significant advantage by, simply put, separating the execution of tasks from the creation and management of threads. Additionally, when used right, they can greatly improve the performance of your application.

And, the great thing about the Java ecosystem is that you have access to some of the most mature and battle-tested implementations of thread-pools out there, if you learn to leverage them properly and take full advantage of them.

The post Finally Getting the Most out of the Java Thread Pool appeared first on Stackify.

More Stories By Stackify Blog

Stackify offers the only developers-friendly solution that fully integrates error and log management with application performance monitoring and management. Allowing you to easily isolate issues, identify what needs to be fixed quicker and focus your efforts – Support less, Code more. Stackify provides software developers, operations and support managers with an innovative cloud based solution that gives them DevOps insight and allows them to monitor, detect and resolve application issues before they affect the business to ensure a better end user experience. Start your free trial now stackify.com

@CloudExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
Augmented reality (AR) and virtual reality (VR) have been the subject of much discourse in the last several years. They were widely anticipated in the gaming and entertainment industries, but in marketing and corporate settings, the benefits were murky at best. Today, these technologies are becoming more of a reality in all areas of business. For example, the new IKEA® shopping app leverages augmented reality to help shoppers determine how certain popular items will look in their homes – no tr...
Data scientists must access high-performance computing resources across a wide-area network. To achieve cloud-based HPC visualization, researchers must transfer datasets and visualization results efficiently. HPC clusters now compute GPU-accelerated visualization in the cloud cluster. To efficiently display results remotely, a high-performance, low-latency protocol transfers the display from the cluster to a remote desktop. Further, tools to easily mount remote datasets and efficiently transfer...
A few years ago – in the early days of Blockchain – a lot of people were taken with the idea of a multifunctional chain on which all transactions could be handled. After Ethereum was launched in 2014, its advocates were talking themselves hoarse about the transformative opportunities the platform introduced. Decentralized applications, they predicted, along with all sorts of value transfers would be executed exclusively on Ethereum from that point on, and no other networks would ever be needed....
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
Quick quiz! What’s the first thing that comes to mind when you hear the following phrases? Artificial grass Artificial sweeteners Artificial flavors Artificial plants
The rise of the market for No-Code platforms and tools has given rise to a burgeoning population of ‘citizen developers’ – non-technical business personnel who can use these platforms to build an increasingly powerful set of business applications without writing a line of code. As this market matures, different platforms focus on different challenges. As a result, a wider range of ‘citizen’ roles also evolve, such as citizen process creators and citizen data analysts. High on this list: th...
As many know, the first generation of Cloud Management Platform (CMP) solutions were designed for managing virtual infrastructure (IaaS) and traditional applications. But that's no longer enough to satisfy evolving and complex business requirements. In his session at 21st Cloud Expo, Scott Davis, Embotics CTO, explored how next-generation CMPs ensure organizations can manage cloud-native and microservice-based application architectures, while also facilitating agile DevOps methodology. He expla...
Every year about this time, we gaze into crystal balls to divine the future of our industry – or at least where it’s headed over the next 365 days. The result is often a triumph of incrementalism: we predict that we will get more of what we already have. The truth is, technology isn’t as revolutionary as we often think – and commenting on incremental changes alone may not help us understand what lies ahead. Along with a few near-term predictions – so hard to resist – I’d also like to make some ...
Another day, another breach. No wonder security is tied for the top barrier to cloud adoption, according to 2017 research from RightScale, with 25 percent of survey respondents naming it, alongside expertise and expense, as their greatest challenge. In the face of security concerns, IT executives have mistakenly found comfort in private clouds over public clouds. The RightScale survey found that enterprises run about 75 percent of workloads in the cloud, with 43 percent done in a private clou...
It’s conference season and, as you might expect, Jason and I have been on the road covering a bunch of them. It’s always great to see what the disruptive players in the market are doing — and this year did not disappoint. But there is one thing that repeatedly happens that just gets under my skin: transformation-washing. As Jason explained in a Forbes article over a year ago, ‘washing’ is when a vendor (or pundit) applies a buzzword loosely in an overt attempt to attach themselves to its buzz. ...
The word polymorphism is used in various contexts and describes situations in which something occurs in several different forms. In computer science, it describes the concept that objects of different types can be accessed through the same interface. Each type can provide its own, independent implementation of this interface. It is one of the core concepts of object-oriented programming (OOP).
"Calligo is a cloud service provider with data privacy at the heart of what we do. We are a typical Infrastructure as a Service cloud provider but it's been designed around data privacy," explained Julian Box, CEO and co-founder of Calligo, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
We all know that end users experience the Internet primarily with mobile devices. From an app development perspective, we know that successfully responding to the needs of mobile customers depends on rapid DevOps – failing fast, in short, until the right solution evolves in your customers' relationship to your business. Whether you’re decomposing an SOA monolith, or developing a new application cloud natively, it’s not a question of using microservices – not doing so will be a path to eventual b...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...
Blockchain. A day doesn’t seem to go by without seeing articles and discussions about the technology. According to PwC executive Seamus Cushley, approximately $1.4B has been invested in blockchain just last year. In Gartner’s recent hype cycle for emerging technologies, blockchain is approaching the peak. It is considered by Gartner as one of the ‘Key platform-enabling technologies to track.’ While there is a lot of ‘hype vs reality’ discussions going on, there is no arguing that blockchain is b...