Ford campus vision and Lidar dataset. http://robots.engin.umich.edu/Downloads
Solution in perception challenge. http://opencv.willow-garage.com/wiki/SolutionsInPerceptionChallenge
UBC Robot Vision Survey. http://www.cs.ubc.ca/labs/lci/vrs/index.html
Introducing Kinect for Xbox 360. http://www.xbox.com/en-US/Kinect/ (2011)
Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Google Scholar
Besl, P.J., Jain, R.C.: Segmentation through variable-order surface fitting. IEEE Trans. Pattern Anal. Mach. Intell. 10 (1988). doi:10.1109/34.3881
Bradski, G.: The OpenCV library. Dr. Dobb’s Journal of Software Tools (2000)
Google Scholar
Browatzki, B., Fischer, J., Birgit, G., Bulthoff, H., Wallraven, C.: Going into depth: evaluating 2d and 3d cues for object classification on a new, large-scale object dataset. In: International Conference on Computer Vision—Workshop on Consumer Depth Cameras for Computer Vision (2011)
Google Scholar
Burrus, N.: Kinect RGB demo V0.4.0. http://nicolas.burrus.name/index.php/Research/KinectRgbDemoV4?from=Research.KinectRgbDemoV2 (2011)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2005)
Google Scholar
Ess, A., Schindler, K., Leibe, B., Gool, L.V.: Object detection and tracking for autonomous navigation in dynamic environments. Int. J. Robot. Res. (2010). doi:10.1177/0278364910365417
Google Scholar
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results. http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
Felzenszwalb, P.F., Girschick, R.B., McAllester, D.: Cascade object detection with deformable part models. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Google Scholar
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. (2009). doi:10.1109/TPAMI.2009.167
Google Scholar
Fritz, M., Saenko, K., Darrell, T.: Size matters: metric visual search constraints from monocular metadata. In: Advances in Neural Information Processing Systems (2010)
Google Scholar
Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: European Conference on Computer Vision (2004)
Google Scholar
Gould, S., Baumstarck, P., Quigley, M., Ng, A.Y., Koller, D.: Integrating visual and range data for robotic object detection. In: European Conference on Computer Vision—Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications (2008)
Google Scholar
Grimson, W.: From Images to Surfaces: A Computational Study of the Human Early Visual System. MIT Press, Cambridge (1981)
Google Scholar
Hattori, H., Seki, A., Nishiyama, M., Watanabe, T.: Stereo-based pedestrian detection using multiple patterns. In: British Machine Vision Conference (2009)
Google Scholar
Helmer, S., Meger, D., Muja, M., Little, J.J., Lowe, D.G.: Multiple viewpoint recognition and localization. In: Asian Conference on Computer Vision (2010)
Google Scholar
Janoch, A., Karayev, S., Jia, Y., Barron, J.T., Fritz, M., Saenko, K., Darrell, T.: A category-level 3-D object dataset: putting the Kinect to work. In: International Conference on Computer Vision—Workshop on Consumer Depth Cameras for Computer Vision (2011)
Google Scholar
Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)
Article
Google Scholar
Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: International Conference on Robotics and Automation (2011)
Google Scholar
Rohrbach, M., Enzweiler, M., Gavrila, D.M.: High-level fusion of depth and intensity for pedestrian classification. In: Annual Symposium of German Association for Pattern Recognition (2009)
Google Scholar
Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: International Conference on Intelligent Robots and Systems (2010)
Google Scholar
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Google Scholar
Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In: International Conference on Computer Vision—Workshop on 3D Representation and Recognition (2011)
Google Scholar
Sun, M., Bradski, G., Xu, B.X., Savarese, S.: Depth-encoded hough voting for joint object detection and shape recovery. In: European Conference on Computer Vision (2010)
Google Scholar
Walk, S., Schindler, K., Schiele, B.: Disparity statistics for pedestrian detection: combining appearance, motion and stereo. In: European Conference on Computer Vision (2010)
Google Scholar
Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: International Conference on Computer Vision (2009)
Google Scholar
Woodford, O., Torr, P., Reid, I., Fitzgibbon, A.: Global stereo reconstruction under second-order smoothness priors. IEEE Trans. Pattern Anal. Mach. Intell. (2009). doi:10.1109/ICCV.2009.5459207
Google Scholar