Abstract
Thermal plasma is expected to be used for many innovative industrial applications, including decomposition of hazardous materials, recovery of valuable materials from waste, and synthesis of high-quality and high-performance nanoparticles. The advantages of thermal plasma, such as high enthalpy that increases reaction rates, high chemical reactivity, and ability to create oxidizing or reducing atmospheres depending on the required chemical reaction, are beneficial for innovative processing. A great deal of experimental and modeling works on thermal plasma properties have been devoted to industrial applications. However, despite these efforts, thermal plasma properties remain to be elucidated. First, a general introduction to thermal plasmas and their properties has been given in Sect. 2, focusing particularly this section focuses on the multiphase AC arc as one of the most attractive thermal plasmas due to its advantages such as large plasma volume and low gas velocity, which are beneficial for material processing. It also has the advantages of more energy efficienct and cost-effective than other thermal plasmas. Section 3 deals with nanoparticle synthesis. In the field of thermal plasma materials synthesis, the formation of nanoparticles is one of the most interesting processes. Section 4 focuses on waste reduction with water plasma. In the field of environmental applications, the water plasma enhances oxidation with active species such as O and OH radicals. This results in more efficient waste decomposition and inhibits the formation of unwanted by-products. Finally, in Sect. 5, hydrogen production by thermal plasmas was reviewed. Thermal plasmas are receiving increasing attention as a potential technology for hydrogen production. Thermal plasma technology can be used to produce hydrogen from a variety of feedstocks. This review discusses thermal plasma processing based on plasma characterization.















































Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Data are available on request from authors.
Abbreviations
- A :
-
Transition probability [s−1]
- A c :
-
Empirical constant of Richardson–Dushman equation [A K2 m−2]
- B :
-
Magnetic field [T]
- C a :
-
First radiation constant [W m2]
- C b :
-
Second radiation constant [m K]
- C p :
-
Specific heat at constant pressure [J kg−1 K−1]
- c :
-
Light speed [m s−1]
- D :
-
Diffusion coefficient [m2 s−1]
- E :
-
Electric field [V m−1]
- E eh :
-
Energy exchange between electron and heavy particle [W m−3]
- E p :
-
Excitation energy [eV]
- e :
-
Electric charge [C]
- f :
-
Frequency [s−1]
- g p :
-
Statistical weight [–]
- h :
-
Enthalpy [J kg−1]
- h p :
-
Planck constant [J s]
- I :
-
Emission intensity [W m−3 sr−1]
- J :
-
Current density [A m−2]
- J :
-
Homogeneous nucleation rate [m−3 s−1]
- K :
-
Equilibrium constant [m−3]
- k:
-
Boltzmann constant [J K−1]
- m j :
-
Mass of jth species [kg]
- n :
-
Number density [m−3]
- n s :
-
Equilibrium saturation monomer concentrations [m−3]
- p :
-
Pressure [Pa]
- q r :
-
Radiative intensity [W m−3]
- ΔQ l :
-
Reaction heat due to reaction l [W m−3]
- r :
-
Radial position [m]
- S :
-
Saturation ratio between partial and saturation vapor pressure [–]
- s 1 :
-
Monomer surface area [m2]
- T :
-
Temperature [K]
- t :
-
Time [s]
- U :
-
Partition function [–]
- U e :
-
Molecule average velocity [m s−1]
- u :
-
Velocity [m s−1]
- u e :
-
Drift velocity [m s−1]
- Y :
-
Mass fraction
- β :
-
Collision frequency [s−1]
- δ s :
-
Skin depth [m]
- δ D :
-
Degree of chemical non-equilibrium due to dissociation [–]
- δ I :
-
Degree of chemical non-equilibrium due to ionization [–]
- ε :
-
Emissivity [–]
- Τ :
-
Mass flux of electrons due to diffusion [kg m−2 s−1]
- ϕ c :
-
Work function [eV]
- λ :
-
Thermal conductivity [W m−1 K−1]
- λ tr :
-
Translational thermal conductivity [W m−1 K−1]
- λ L :
-
Mean free path [m]
- λ I :
-
Wavelength [m]
- μ 0 :
-
Magnetic permeability [T2 J−1 m3]
- ν:
-
Collision frequency [s−1]
- ρ :
-
Density: [kg m−3]
- θ :
-
Dimensionless surface tension [–]
- σ :
-
Electrical conductivity [A V−1 m−1]
- σ s :
-
Surface tension [N m−1]
- τ :
-
Stress tensor [Pa]
- τ e :
-
Time between a collision [s]
- Ω ij :
-
Collision integrals between species i and j [m2]
- ξ :
-
Vacuum magnetic permeability [T2 J−1 m3]
- C:
-
Cathode
- i, j :
-
Chemical species
- e:
-
Electron
- h:
-
Heavy particle
References
S. Alavi, J. Mostaghimi, A novel ICP torch with conical geometry. Plasma Chem. Plasma Process. 39, 359–376 (2019). https://doi.org/10.1007/s11090-018-9948-5
J. Aminian, A.K. Arshad, Performance analysis of syngas production in a water thermal plasma reactor. Int. J. Hydrog. Energy 45(55), 30017–30028 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.128
B. Bachmann, E. Siewert, J. Schein, In situ droplet surface tension and viscosity measurements in gas metal arc welding. J. Phys. D 45, 175202 (2012). https://doi.org/10.1088/0022-3727/45/17/175202
M. Baeva, M.S. Benilov, N.A. Almeida, D. Uhrlandt, Novel non-equilibrium modelling of a DC electric arc in argon. J. Phys. D 49, 245205 (2016). https://doi.org/10.1088/0022-3727/49/24/245205
L. Bai, H. Zhang, H. Jin, F. Yuan, S. Huang, J. Li, Radio-frequency atmospheric-pressure plasma synthesis of ultrafine ZrC powders. Int. J. Appl. Ceram. Technol. 10(S1), E274–E281 (2013). https://doi.org/10.1111/j.1744-7402.2012.02816.x
J. Balgaranova, Plasma chemical gasification of sewage sludge. Waste Manage. Res. 21(1), 38–41 (2003). https://doi.org/10.1177/0734242X0302100105
J. Batdorf, Synthesis gas production with the plasma enhanced melter (PEMTM), In: Proc. 18th Inter. Symp. Plasma Chem., Kyoto, Japan, 764 (2007).
P.R. Behera, B. Bhoi, R.K. Paramguru, P.S. Mukherjee, B.K. Mishra, Hydrogen plasma smelting reduction of Fe2O3. Metall. Mater. Trans. B 50, 262–270 (2019). https://doi.org/10.1007/s11663-018-1464-8
S.V. Bhosale, P.S. Ekambe, S.V. Bhoraskar, V.L. Mathe, Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity. Appl. Surf. Sci. 441, 724 (2018). https://doi.org/10.1016/j.apsusc.2018.01.220
M.I. Boulos, Flowand temperature fields in the fire-ball of an inductively coupled plasma. IEEE Trans. Plasma Sci. (1976). https://doi.org/10.1109/TPS.1976.4316928
M.I. Boulos, Thermal plasma processing. IEEE Trans. Plasma Sci. 19(6), 1078–1089 (1991). https://doi.org/10.1109/27.125032
M.I. Boulos, The inductively coupled radio frequency plasma. High Temp. Mater. Process. 1(1), 17–39 (1997). https://doi.org/10.1615/HighTempMatProc.v1.i1.20
L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, Plasma catalytic reforming of methane. Energy 24(12), 1131–1137 (1999). https://doi.org/10.1016/S0360-3199(98)00178-5
B. Buragohain, P. Mahanta, V.S. Moholkar, Biomass gasification for decentralized power generation. The Indian perspective. Renew. Sustain. Energy Rev. 14(1), 73–92 (2010). https://doi.org/10.1016/j.rser.2009.07.034
K. Chen, M.I. Boulos, Turbulence in induction plasma modeling. J. Phys. D 27, 946–952 (1994). https://doi.org/10.1088/0022-3727/27/5/011
X. Chen, E. Pfender, Modeling of RF plasma torch with a metallic tube inserted for reactant injection. Plasma Chem. Plasma Process. 11, 103–128 (1991). https://doi.org/10.1007/BF01447036
Y. Cheng, M. Shigeta, S. Choi, T. Watanabe, Formation mechanism of titanium boride nanoparticles by RF induction thermal plasma. Chem. Eng. J. 183, 483–491 (2012). https://doi.org/10.1016/j.cej.2011.12.040
S. Choi, S.H. Hong, H.S. Lee, T. Watanabe, A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. Chem. Eng. J. 185, 193–200 (2012a). https://doi.org/10.1016/j.cej.2012.01.077
S. Choi, S.H. Hong, S. Kim, D.W. Park, T. Watanabe, Magnetically driven rotation of thermal plasma jet for non-degradable CF4 treatment. Thin Solid Films 523, 55–62 (2012b). https://doi.org/10.1016/j.tsf.2012.06.007
S. Choi, D.W. Park, T. Watanabe, Thermal plasma decomposition of fluorinated greenhouse gases. Nucl. Eng. Technol. 44(1), 21–32 (2012c). https://doi.org/10.5516/NET.77.2012.003
S. Choi, D.W. Park, T. Watanabe, Thermal plasma decomposition of fluorinated greenhouse gases. Nucl. Eng. Technol. 44(1), 21-32 (2012d) https://doi.org/10.5516/NET.77.2012.003
S. Choi, L.D.S. Lapitan, Y. Cheng, T. Watanabe, Synthesis of cobalt boride nanoparticles using RF thermal plasma. Adv. Powder Technol. 25, 365–371 (2014). https://doi.org/10.1016/j.apt.2013.06.002
V. Colombo, A. Concetti, E. Ghedini, S. Dallavalle, M. Vancini, High-speed imaging in plasma arc cutting: a review and new developments. Plasma Sources Sci. Technol. 18, 023001 (2009). https://doi.org/10.1088/0963-0252/18/2/023001
V. Colombo, A. Concetti, E. Ghedini, F. Rotundo, S. Dallavalle, Experimental analysis of the behaviour of high current electrodes in plasma arc cutting during first cycles. Plasma Sources Sci. Technol. 19, 065023 (2010). https://doi.org/10.1088/0963-0252/19/6/065023
S.K. Das, A. Das, M. Gaboardi, S. Pollastri, G.D. Dhamale, C. Balasubramanian, B. Joseph, Large scale synthesis of copper nickel alloy nanoparticles with reduced compressibility using arc thermal plasma process. Sci. Rep. 11, 7629 (2021). https://doi.org/10.1038/s41598-021-86776-0
S. Deng, W. Xing, T. Sato, S. Zen, N. Takeuchi, Experimental and theoretical study on reactive oxygen and nitrogen species generation in plasma bubbles with ammonia solution. Plasma Process. Polym. 21(6), 2300223 (2024). https://doi.org/10.1002/ppap.202300223
G.D. Dhamale, V.L. Mathe, S.V. Bhoraskar, S.N. Sahasrabudhe, S. Ghorui, Synthesis and characterization of Nd2O3 nanoparticles in a radiofrequency thermal plasma reactor. Nanotechnol. 27(8), 85603 (2016). https://doi.org/10.1088/0957-4484/27/8/085603
I. Doğan, N.J. Kramer, R.H.J. Westermann, K. Dohnalová, A.H.M. Smets, M.A. Verheijen, T. Gregorkiewicz, M.C.M. van de Sanden, Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution. J. Appl. Phys. 113, 134306 (2013). https://doi.org/10.1063/1.4799402
Z. Duan, J. Heberlein, Arc instabilities in a plasma spray torch. J Thermal Spray Technol. 11(1), 44–51 (2002). https://doi.org/10.1361/105996302770348961
S. Elaissi, M. Yousfi, S. Kaziz, K. Charrada, M. Sassi, Radio-frequency electronegative gas discharge behaviour in a parallel-plate reactor for material processing. Plasma Dev. Operat. 14, 27–45 (2006). https://doi.org/10.1080/10519990500493874
J. Favas, E. Monteiro, A. Rouboa, Hydrogen production using plasma gasification with steam injection. Int. J. Hydrog. Energy 42(16), 10997–11005 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.109
P. Fazekas, Z. Czegeny, J. Mink, P. Szabo, A. Keszler, E. Bodis, S. Klebert, J. Szepvolgyi, Z. Karoly, Thermal plasma decomposition of tetrachloroethylene. Plasma Chem. Plasma Process. 38(4), 771–790 (2018). https://doi.org/10.1007/s11090-018-9895-1
K.A. Foglein, P.T. Szabo, I.Z. Babievskaya, J. Szepvolgyi, Comparative study on the decomposition of chloroform in thermal and cold plasma. Plasma Chem. Plasma Process. 25(3), 289–302 (2005). https://doi.org/10.1007/s11090-004-3041-y
R.H. Fowler, E.A. Milne, Intensities of absorption lines in stellar spectra. Monthly Notices R. Astron. Soc. 83, 403–424 (1923). https://doi.org/10.1093/mnras/83.7.403
A.M. Fudolig, H. Nogami, J. Yagi, Prediction of generation rates in “reactive arc plasma” ultrafine powder production process. ISIJ Inter. 37, 641–646 (1997). https://doi.org/10.2355/isijinternational.37.641
H. Fujimoto, H. Tokunaga, H. Iritani, A high-powered AC plasma torch for the arc heating of molten steel in the tundish. Plasma Chem. Plasma Process. 14, 361–382 (1994). https://doi.org/10.1007/BF01447086
L. Fulcheri, V.J. Rohani, E. Wyse, N. Hardman, E. Dames, An energy-efficient plasma methane pyrolysis process for high yield of carbon black and hydrogen. Int. J. Hydrogen Energy 48, 2920–2928 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.144
H. Gabbar, S. Darda, V. Damideh, I. Hassen, M. Aboughaly, D. Lisi, Comparative study of atmospheric pressure DC, RF, and microwave thermal plasma torches for waste to energy applications. Sustain. Energy Technol. 47, 101447 (2021). https://doi.org/10.1016/j.seta.2021.101447
N.P. Ghodke, S. Rayaprol, S.V. Bhorashar, V.L. Mathe, Catalytic hydrolysis of sodium borohydride solution for hydrogen production using thermal plasma synthesized nickel nanoparticles. Int. J. Hydrogen Energy 33(24), 16591–16605 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.143
S.L. Girshick, C.P. Chiu, P.H. McMurry, Time-dependent aerosol models and homogeneous nucleation rates. Aerosol Sci. Technol. 13, 465–477 (1990). https://doi.org/10.1080/02786829008959461
G. Gött, H. Schöpp, F. Hoffmann, G. Heinz, Improvement of the control of a gas metal arc welding process. Meas. Sci. Technol. 21, 025201 (2010). https://doi.org/10.1088/0957-0233/21/2/025201
V. Grigaitiene, V. Snapkauskiene, P. Valatkevicius, A. Tamosiunas, V. Valincius, Water vapor plasma technology for biomass conversion to synthetic gas. Catal. Today 167(1), 135–140 (2011). https://doi.org/10.1016/j.cattod.2010.12.029
J. Haidar, A.J.D. Farmer, Surface temperature measurements for tungsten-based cathodes of high-current free-burning arcs. J. Phys. d. 28, 2089–2094 (1995). https://doi.org/10.1088/0022-3727/28/10/014
N.J. Hardman, The new carbon black and its role in the United States manufacturing renaissance. Reinf. Plast. 61(3), 145–148 (2017). https://doi.org/10.1016/j.repl.2017.02.002
T. Hasegawa, S. Kanatani, M. Kazaana, K. Takahashi, K. Kumagai, M. Hirao, S. Ishio, Conversion of FeCo from soft to hard magnetic material by lattice engineering and nanopatterning. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-13602-x
T. Hashizume, M. Tanaka, T. Watanabe, Effect of arc current on droplet ejection from tungsten-based electrode in multiphase AC arc. Jpn. J. Appl. Phys. 56(5), 05610 (2017). https://doi.org/10.7567/JJAP.56.056101
J.V. Heberlein, J. Mental, E. Pfender, The anode region of electric arcs: a survey. J. Phys. D 43, 023001 (2010). https://doi.org/10.1088/0022-3727/43/2/023001
Y. Hirayama, M. Shigeta, Z. Liu, N. Yodoshi, A. Hosokawa, K. Takagi, Anisotropic Nd-Fe ultrafine particles with stable and metastable phases prepared by induction thermal plasma. J. Alloys Compd. 873, 159724 (2021). https://doi.org/10.1016/j.jallcom.2021.159724
M. Hlina, M. Hrabovsky, T. Kavka, M. Konrad, Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Manag. 34(1), 63–66 (2014). https://doi.org/10.1016/j.wasman.2013.09.018
W.F.L.M. Hoeben, E.M. van Veldhuizen, W.R. Rutgers, G.M.W. Kroesen, Gas phase corona discharges for oxidation of phenol in an aqueous solution. J. Phys. D 32, 133–137 (1999). https://doi.org/10.1088/0022-3727/32/24/103
W.F.L.M. Hoeben, E.M.V. Veldhuizen, W.R. Rutgers, C.A.M.G. Cramers, G.M.W. Kroesen, The degradation of aqueous phenol solutions by pulsed positive corona discharges. Plasma Sources Sci. Technol. 9, 361–369 (2000). https://doi.org/10.1088/0963-0252/9/3/315
Y.C. Hong, H.S. Uhm, B.J. Chun, S.K. Lee, S.K. Hwang, D.S. Kim, Microwave plasma torch abatement of NF3 and SF6. Phys. Plasmas 13(3), 033508 (2006). https://doi.org/10.1063/1.2182240
G. Hou, B. Cheng, Y. Cao, M. Yao, F. Ding, P. Hu, F. Yuan, Scalable synthesis of highly dispersed silicon nanospheres by RF thermal plasma and their use as anode materials for high-performance Li-ion batteries. J. Mater. Chem. A 3(35), 18136–18145 (2015a). https://doi.org/10.1039/C5TA04620C
G. Hou, B. Cheng, F. Ding, M. Yao, P. Hu, F. Yuan, Synthesis of uniform α-Si3N4 nanospheres by RF induction thermal plasma and their application in high thermal conductive nanocomposites. ACS Appl. Mater. Interfaces 7, 2873 (2015b). https://doi.org/10.1021/am5081887
M. Hrabovsky, Water-stabilized plasma generators. Pure Appl. Chem. 70, 1157–1162 (1998). https://doi.org/10.1351/pac199870061157
M. Hrabovsky, Generation of thermal plasmas in liquid-stabilized and hybrid dc-arc torches. Pure Appl. Chem. 74, 429–433 (2002). https://doi.org/10.1351/pac200274030429
M. Hrabovsky, M. Konrad, V. Kopecky, V. Sember, Processes and properties of electric arc stabilized by water vortex. IEEE Trans. Plasma Sci. 25, 833–839 (1997). https://doi.org/10.1109/27.649578
M. Hrabovsky, V. Kopecky, V. Sember, T. Kavka, O. Chumak, M. Konrad, Properties of hybrid water/gas DC arc plasma torch. IEEE Trans. Plasma Sci. 34, 1566–1575 (2006). https://doi.org/10.1109/TPS.2006.878365
M. Hrabovsky, M. Hlina, V. Kopecky, A. Maslani, O. Zivny, P. Krenek, A. Serov, O. Hurba, Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem. Plasma Process. 37, 739–762 (2017). https://doi.org/10.1007/s11090-016-9783-5
M. Hrabovsky, M. Hlina, V. Kopecky, A. Maslani, P. Krenek, A. Serov, O. Hurba, Steam plasma methane reforming for hydrogen production. Plasma Chem. Plasma Process. 38, 743–758 (2018). https://doi.org/10.1007/s11090-018-9891-5
K.C. Hsu, K. Etemadi, E. Pfender, Study of the free-burning high-intensity argon arc. J. Appl. Phys. 54, 1293–1301 (1983). https://doi.org/10.1063/1.332195
T. Ishigaki, X. Fan, T. Sakuta, T. Banjo, Y. Shibuya, Generation of pulse-modulated induction thermal plasma at atmospheric pressure. Appl. Phys. Lett. 71(26), 3787–3789 (1997). https://doi.org/10.1063/1.120506
T. Ishigaki, S. Oh, J. Li, D. Park, Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma. Sci. Technol. Adv. Mater. 6, 111 (2005). https://doi.org/10.1016/j.stam.2004.11.001
M. Jasinski, M. Dors, J. Mizeraczyk, Destruction of freon HFC-134a using a nozzleless microwave plasma source. Plasma Chem. Plasma Process. 29(5), 363–372 (2009). https://doi.org/10.1007/s11090-009-9183-1
T. Jedrzejczyk, Z. Kolacinski, D. Koza, G. Raniszewski, L. Szymanski, S. Wiak, Plasma recycling of chloroorganic wastes. Open Chem. 13(1), 156–160 (2015). https://doi.org/10.1515/chem-2015-0023
J. Jenista, S. Chau, S. Chien, O. Zivny, H. Takana, H. Nishiyama, M. Bartlova, V. Aubrecht, A. Murphy, Modeling of argon–steam thermal plasma flow for abatement of fluorinated compounds. J. Phys. D 55, 375201 (2022). https://doi.org/10.1088/1361-6463/ac7aee
M. Kambara, A. Kitayama, K. Homma, T. Hideshima, M. Kaga, K.Y. Sheem, S. Ishida, T. Yoshida, Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J. Appl. Phys. 115(14), 143302 (2014). https://doi.org/10.1063/1.4870600
M. Kambara, S. Hamazaki, N. Kodama, Y. Tanaka, Efficient modification of Si/SiOx nanoparticles by pulse-modulated plasma flash evaporation for an improved capacity of lithium-ion storage. J. Phys. D 52, 325502 (2019). https://doi.org/10.1088/1361-6463/ab1c9f
M. Kamo, Y. Sato, S. Matsumoto, N. Setaka, Diamond synthesis from gas phase in microwave plasma. J. Cryst. Growth 62, 642–644 (1983). https://doi.org/10.1016/0022-0248(83)90411-6
N.S. Kanhe, A. Kumar, S.M. Yusuf, A.B. Nawale, S.S. Gaikwad, S.A. Raut, S.V. Bhoraskar, S.Y. Wu, A.K. Das, V.L. Mathe, Investigation of structural and magnetic properties of thermal plasma-synthesized Fe1−xNix alloy nanoparticles. J. Alloys Compd. 663, 30–40 (2016). https://doi.org/10.1016/j.jallcom.2015.11.190
C.K. Kiefer, R. Antunes, A. Hecimovic, A. Meindl, U. Fants, CO2 dissociation using a lab-scale microwave plasma torch: An experimental study in view of industrial application. Chem. Eng. J. 4812, 148326 (2024). https://doi.org/10.1016/j.cej.2023.148326
S.W. Kim, H.S. Park, H.J. Kim, 100 kW steam plasma process for treatment of PCBs (polychlorinated biphenyls) waste. Vacuum 70(1), 59–66 (2003). https://doi.org/10.1016/S0042-207X(02)00761-3
D.W. Kim, T.H. Kim, H.W. Park, D.W. Park, Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma. Appl. Surf. Sci. 257, 5375 (2011). https://doi.org/10.1016/j.apsusc.2010.12.029
K.I. Kim, S. Choi, J.H. Kim, W.S. Cho, K.T. Hwang, K.S. Han, Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma. Ceram. Inter. 40, 8117 (2014). https://doi.org/10.1016/j.ceramint.2014.01.006
T.H. Kim, S. Choi, D.W. Park, Thermal plasma synthesis of crystalline gallium nitride nanopowder from gallium nitrate hydrate and melamine. Nanomater. 6, 38 (2016a). https://doi.org/10.3390/nano6030038
Y.M. Kim, K.H. Kim, B. Kim, H. Choi, Size and morphology manipulation of nickel nanoparticle in inductively coupled thermal plasma synthesis. J. Alloys Compd. 658, 824–831 (2016b). https://doi.org/10.1016/j.jallcom.2015.10.136
M.S. Kim, J.H. Oh, T.H. Kim, Y.H. Lee, S.H. Hong, S. Choi, Synthesis of metal boride nanoparticles using triple thermal plasma jet system. J. Nanosci. Nanotechnol. 19, 6264–6270 (2019). https://doi.org/10.1166/jnn.2019.17026
S.H. Kim, M. Tanaka, M.H. Lee, T. Watanabe, Arc behavior and temperature distribution in water thermal plasma with mist generation. J. Chem. Eng. Jpn. 54(6), 277–282 (2021). https://doi.org/10.1252/jcej.21we020
S.H. Kim, M. Tanaka, M.H. Lee, T. Watanabe, Decomposition of N, N-diethyl-m-toluamide by water plasma with mist generation. J. Env. Chem. Eng. 10(3), 107817 (2022a). https://doi.org/10.1016/j.jece.2022.107817
S.H. Kim, M. Tanaka, M.H. Lee, T. Watanabe, Enhanced decomposition of caffeine by water plasma combined with mist generator. Effect of operational parameter and decomposition pathway. Chemosphere 307(3), 136056 (2022b). https://doi.org/10.1016/j.chemosphere.2022.136056
J.H. Ko, S. Choi, H.W. Park, D.W. Park, Decomposition of nitrogen trifluoride using low power arc plasma. Plasma Sci. Technol. 15(9), 923 (2013). https://doi.org/10.1088/1009-0630/15/9/17
N. Kodama, Y. Tanaka, K. Kita, Y. Uesugi, T. Ishijima, S. Watanabe, K. Nakamura, A method for large-scale synthesis of Al-doped TiO2 nanopowder using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding. J. Phys. D 47, 195304 (2014). https://doi.org/10.1088/0022-3727/47/19/195304
L. Kumaresan, G. Shanmugavelayutham, S. Surendran, U. Sim, Thermal plasma arc discharge method for high-yield production of hexagonal AlN nanoparticles: synthesis and characterization. J. Korean Ceram. Soc. 59, 338 (2022). https://doi.org/10.1007/s43207-021-00177-7
L. Kumaresan, K.S. Harshini, H. Amir, G. Shanmugavelayutham, C. Viswanathan, Single-step synthesis of Mn3N2, MnxON and Mn3O4 nanoparticles by thermal plasma arc discharge technique and their comparative study as electrode material for supercapacitor application. J. Alloys Compd. 942, 169121 (2023a). https://doi.org/10.1016/j.jallcom.2023.169121
L. Kumaresan, C. Selvakumar, G. Shanmugavelayutham, K. Jayasankar, Fabrication of carbon-coated chromium nitride (CrN@C) and chromium oxynitride (CrON) nanoparticles by a thermal plasma technique for supercapacitor applications. New J. Chem. 47, 17080 (2023b). https://doi.org/10.1039/D3NJ02526H
H.J. Lee, Y.K. Park, Hydrogen production from a solution plasma process of bio-oil. Int. J. Hydrogen Energ. 45, 20210–20215 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.185
P. Lei, S.L. Girshick, Thermal plasma synthesis of superparamagnetic iron oxide nanoparticles. Plasma Chem. Plasma Process. 32, 519 (2012). https://doi.org/10.1007/s11090-012-9364-1
A.S. Lerner, V.E. Popov, V.A. Kuznetsov, A.A. Ufimtsev, S.V. Shengel, D.I. Subbotin, Production of hydrogen-containing gas using the process of steam-plasma gasification of used tires. Glass Phys. Chem. 38, 511–516 (2012). https://doi.org/10.1134/S1087659612060041
J.G. Li, M. Ikeda, R. Ye, Y. Moriyoshi, T. Ishigaki, Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma. J. Phys. D 40, 2348 (2007). https://doi.org/10.1088/0022-3727/40/8/S14
T.M. Li, T. Watanabe, K. Ochi, K. Otsuki, Liquid waste decomposition by long DC arc under atmospheric pressure. Chem. Eng. J. 231, 155–162 (2013). https://doi.org/10.1016/j.cej.2013.07.003
F. Liang, M. Tanaka, S. Choi, T. Watanabe, Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method. Mater. Res. Bull. 60, 158–165 (2014). https://doi.org/10.1016/j.materresbull.2014.08.029
F. Liang, M. Tanaka, S. Choi, T. Watanabe, Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge. Carbon 117, 100–111 (2017). https://doi.org/10.1016/j.carbon.2017.02.084
N.P. Long, Y. Katada, Y. Tanaka, Y. Uesugi, Y. Yamaguchi, Cathode diameter and operating parameter effects on hafnium cathode evaporation for oxygen plasma cutting arc. J. Phys. D 45, 435203 (2012). https://doi.org/10.1088/0022-3727/45/43/435203
J.J. Lowke, M. Tanaka, LTE-diffusion approximation for arc calculations. J Phys. D 39, 3634–3643 (2006). https://doi.org/10.1088/0022-3727/39/16/017
S. Ma, H. Gao, L. Wu, S. Zheng, Time and spatially resolved spectroscopic measurement of temperatures in a free-burning arc by monochromatic imaging. Meas. Sci. Technol. 19(11), 105602 (2008). https://doi.org/10.1088/0957-0233/19/10/105602
H. Maecker, Ein Lichtbogen für hohe Leistungen. Z. Phys. 129, 108–122 (1951). https://doi.org/10.1007/BF01333655
K. Major, J. Veilleux, G. Brisard, Lithium iron phosphate powders and coatings obtained by means of inductively coupled thermal plasma. J. Thermal Spray Technol. 25(1–2), 357–364 (2016). https://doi.org/10.1007/s11666-015-0289-0
A. Maslani, M. Hlina, M. Hrabovsky, P. Krenek, V. Sikarwar, J. Fathi, S. Raman, S. Skoblia, O. Jankovsky, A. Jirickova, S. Sharma, T. Mates, R. Musalek, F. Lukac, M. Jeremias, Impact of natural gas composition on steam thermal plasma assisted pyrolysis for hydrogen and solid carbon production. Energ. Convers. Manage. 297, 117748 (2023). https://doi.org/10.1016/j.enconman.2023.117748
M. Materazzi, P. Lettieri, L. Mazzei, R. Taylor, C. Chapman, Reforming of tars and organic sulphur compounds in a plasma-assisted process for waste gasification. Fuel Process. Technol. 137, 259–268 (2015). https://doi.org/10.1016/j.fuproc.2015.03.007
V.L. Mathe, V. Varma, S. Raut, A.K. Nandi, A. Pant, H. Prasanth, R.K. Pandey, S.V. Bhoraskar, A.K. Das, Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route. Appl. Surf. Sci. 368, 16–26 (2016). https://doi.org/10.1016/j.apsusc.2016.01.246
T. Matsuo, M. Tanaka, T. Watanabe, Analysis of fluctuation phenomena in water plasma. IEEJ Trans. Power Energy. 136(9), 749–754 (2015). https://doi.org/10.1541/ieejpes.136.749
T. Matsuura, K. Taniguchi, T. Watanabe, A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes. Thin Solid Films 515, 4240–4246 (2007). https://doi.org/10.1016/j.tsf.2006.02.086
Y. Mitsuda, T. Yoshida, K. Akashi, Development of a new microwave plasma torch and its application to diamond synthesis. Rev. Sci. Instrum. 60, 249–252 (1989). https://doi.org/10.1063/1.1140416
Y. Mizukoshi, S. Hatanaka, K. Okitsu, Y. Iseki, R. Iwasaki, T. Sakamoto, S. Yamaguchi, H. Tanaka, S. Tanabe, Plasma generation in aqueous solution containing volatile solutes. Jpn. J. Appl. Phys. 57, 0102B7 (2017). https://doi.org/10.7567/JJAP.57.0102B7
J. Mostaghimi, M.I. Boulos, Two-dimensional electromagnetic field effects in induction plasma modelling. Plasma Chem. Plasma Process. 9(1), 25–44 (1989). https://doi.org/10.1007/BF01015825
J. Mostaghimi, M.I. Boulos, Effect of frequency on local thermodynamic equilibrium conditions in an inductively coupled argon plasma at atmospheric pressure. J. Appl. Phys. 68, 2643–2648 (1990). https://doi.org/10.1063/1.346489
J. Mostaghimi, M.I. Boulos, Thermal plasma sources: how well are they adopted to process needs? Plasma Chem. Plasma Process. 35(3), 421–436 (2015). https://doi.org/10.1007/s11090-015-9616-y
J. Mostaghimi, P. Proulx, M.I. Boulos, An analysis of the computer modeling of the flow and temperature fields in an inductively coupled plasma. Numer. Heat Transfer. 8, 187–197 (1985). https://doi.org/10.1080/01495728508961849
J. Mostaghimi, P. Proulx, M.I. Boulos, A two-temperature model of the inductively coupled rf plasma. J. Appl. Phys. 61(5), 1753–1760 (1987). https://doi.org/10.1063/1.338073
J. Mostaghimi, K.C. Paul, T. Sakuta, Transient response of the radio frequency inductively coupled plasma to a sudden change in power. J. Appl. Phys. 83, 1989–1908 (1998). https://doi.org/10.1063/1.366914
A.B. Murphy, Plasma destruction of gaseous and liquid wastes. Heat and mass transfer under plasma conditions. Anal. New York Acad. Sci. 1999, 106–123 (1994). https://doi.org/10.1111/j.1749-6632.1999.tb08758.x
A.B. Murphy, Modified Fowler-Milne method for the spectroscopic measurement of temperature and composition of multielement thermal plasmas. Rev. Sci. Instrum. 65(11), 3423–3427 (1994). https://doi.org/10.1063/1.1144516
A.B. Murphy, A.J.D. Farmer, E.C. Horrigan, T. McAllister, Plasma destruction of ozone depleting substances. Plasma Chem. Plasma Process. 22(3), 371–385 (2002). https://doi.org/10.1023/A:1015365032020
A.B. Murphy, M. Tanaka, K. Yamamoto, S. Tashiro, T. Sato, J.J. Lowke, Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and metal vapour. J. Phys. D 42, 194006 (2009). https://doi.org/10.1088/0022-3727/42/19/194006
A. B. Murphy, Waste destruction and the possibility of recycling in the PLASCON process. In: 18th Inter. Symp. Plasma Chem., Kyoto, Japan, 763 (2007)
H. Na, W. Lee, H. Choi, Characteristics of Ni–W bimetallic nanoparticle via reactive RF thermal plasma synthesis. Int. J. Refractory Metals Hard Mater. 53, 17 (2015a). https://doi.org/10.1016/j.ijrmhm.2015.04.027
Y.S. Na, H. Yoo, T.H. Kim, J. Choi, W.I. Lee, S. Choi, D.W. Park, Electrochemical performance of Si-multiwall carbon nanotube nanocomposite anode synthesized by thermal plasma. Thin Solid Films 587, 14–19 (2015b). https://doi.org/10.1016/j.tsf.2014.12.038
H. Na, J.W. Park, H. Choi, Y.S. Cho, Radio frequency thermal plasma-processed Ni-W nanostructures for printable microcircuit electrodes. Mater. des. 191, 108590 (2020). https://doi.org/10.1016/j.matdes.2020.108590
T. Namihira, S. Sakai, T. Yamaguchi, K. Yamamoto, C. Yamada, T. Kiyan, T. Sakugawa, S. Katsuki, H. Akiyama, Electron temperature and electron density of underwater pulsed discharge plasma produced by solid-state pulsed-power generator. IEEE Trans. Plasma Sci. 35, 614–618 (2007). https://doi.org/10.1109/TPS.2007.896965
H. Narengerile, Decomposition of organic waste by water plasmas at atmospheric pressure (Tokyo Institute of Technology, Tokyo, 2011)
T. Narengerile, Watanabe, acetone decomposition by water plasmas at atmospheric pressure. Chem. Eng. Sci. 69(1), 296–303 (2012). https://doi.org/10.1016/j.ces.2011.10.045
H. Narengerile, T. Nishioka, Watanabe, mechanisms of decomposition of organic compounds by water plasmas at atmospheric pressure. Jpn. J. Appl. Phys. 50(8), 5 (2011). https://doi.org/10.1143/JJAP.50.08JF13
H. Narengerile, T. Saito, Watanabe, Decomposition of tetrafluoromethane by water plasma generated under atmospheric pressure. Thin Solid Films 518(3), 929–935 (2009). https://doi.org/10.1016/j.tsf.2009.07.164
H. Narengerile, T. Saito, Watanabe, decomposition mechanism of fluorinated compounds in water plasmas generated under atmospheric pressure. Plasma Chem. Plasma Process. 30(6), 813–829 (2010). https://doi.org/10.1007/s11090-010-9259-y
M.H. Narengerile, T. Yuan, Watanabe, decomposition mechanism of phenol in water plasmas by DC discharge at atmospheric pressure. Chem. Eng. J. 168(3), 985–993 (2011). https://doi.org/10.1016/j.cej.2011.01.072
J. Nava-Avendaño, M. Nussbaum, J. Veilleux, Thermal plasma synthesis of Li2S nanoparticles for application in lithium-sulfur batteries. Plasma Chem. Plasma Process. 41, 1149–1167 (2021). https://doi.org/10.1007/s11090-021-10168-5
A.B. Nawale, N.S. Kanhe, S.V. Bhoraskar, V.L. Mathe, A.K. Das, Influence of crystalline phase and defects in the ZrO2 nanoparticles synthesized by thermal plasma route on its photocatalytic properties. Mater. Res. Bull. 47, 3432 (2012). https://doi.org/10.1016/j.materresbull.2012.07.010
V. Nemchinsky, Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc. J. Phys. D 45, 135201 (2012). https://doi.org/10.1088/0022-3727/45/13/135201
V. Nemchinsky, Erosion of thermionic cathodes in welding and plasma arc cutting systems. IEEE Trans. Plasma Sci. 42, 199–215 (2014). https://doi.org/10.1109/TPS.2013.2287794
A. Nemmour, A. Inayat, I. Janajreh, C. Ghenai, Syngas production from municipal solid waste plasma gasification. A simulation and optimization study. Fuel 349, 128698 (2023). https://doi.org/10.1016/j.fuel.2023.128698
G.H. Ni, Y. Lan, C. Cheng, Y.D. Meng, X.K. Wang, Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure. Int. J. Hydrog. Energy 36(20), 12869–12876 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.063
H. Nishikawa, M. Ibe, M. Tanaka, M. Ushio, T. Takemoto, K. Tanaka, N. Tanahashi, T. Ito, A treatment of carbonaceous wastes using thermal plasma with steam. Vacuum 73(3–4), 589–593 (2004). https://doi.org/10.1016/j.vacuum.2003.12.074
S. Ognier, D. Iya-sou, C. Fourmond, S. Cavadias, Analysis of mechanisms at the plasma-liquid interface in a gas-liquid discharge reactor used for treatment of polluted water. Plasma Chem. Plasma Process. 29, 261–273 (2009). https://doi.org/10.1007/s11090-009-9179-x
J.W. Oh, H. Na, Y.S. Cho, H. Choi, In situ synthesis of bimetallic tungsten-copper nanoparticles via reactive radio-frequency (RF) thermal plasma. Nanoscale Res. Lett. 13, 220 (2018). https://doi.org/10.1186/s11671-018-2623-1
J.H. Oh, M. Kim, Y.H. Lee, S.H. Hong, T.H. Kim, S. Choi, Synthesis of tungsten carbide nanomaterials in triple DC thermal plasma jet system. J. Nanosci. Nanotechnol. 19, 6277–6284 (2019). https://doi.org/10.1166/jnn.2019.17029
J.H. Oh, M. Kim, S.H. Hong, Y.H. Lee, T.H. Kim, S. Choi, Facile synthesis of cubic boron nitride nanoparticles from amorphous boron by triple thermal plasma jets at atmospheric pressure. Adv. Powder Technol. 33, 103400 (2022). https://doi.org/10.1016/j.apt.2021.103400
S. Ohno, M. Uda, Generation rate of ultrafine metal particles in hydrogen plasma-metal reaction. J. Japan Inst. Metals. 48(6), 640–646 (1984). https://doi.org/10.2320/jinstmet1952.48.6_640
S. Ohno, M. Uda, Preparation for ultrafine particles of Fe-Ni, Fe-Cu and Fe-Si alloys by hydrogen plasma-metal reaction. J. Japan Inst. Metals 53(9), 946–952 (1989). https://doi.org/10.2320/jinstmet1952.53.9_936
R. Ohta, M. Dougakiuchi, M. Kambara, Formation of the multi-component Li-La-Zr-O nanoparticles by co-condensation during plasma flash evaporation. Jpn. J. Appl. Phys. 60(3), 036004 (2021). https://doi.org/10.3848/1347-4065/abe63e
A. Okati, M. Khani, B. Shokri, E. Monteiro, A. Rouboa, Numerical modeling of plasma gasification process of polychlorinated biphenyl wastes. Energy Rep. 7, 270–285 (2021). https://doi.org/10.1016/j.egyr.2021.07.123
T. Okuma, T. Imatsuji, T. Hashizume, M. Tanaka, T. Watanabe, H. Nagai, T. Koiwasaki, H. Nasu, Effects of working pressure on temperature characteristics in multiphase ac arc. J. Fluid Sci. Technol. 13(4), JFST0024 (2018). https://doi.org/10.1299/jfst.2018jfst0024
T. Okuma, T. Imatsuji, T. Hashizume, M. Tanaka, T. Watanabe, H. Nagai, T. Koiwasaki, H. Nasu, Effects of the driving frequency on temperature in a multiphase AC arc. IEEE Trans. Plasma Sci. 47(1), 32–38 (2019). https://doi.org/10.1109/TPS.2018.2832286
T. Okuma, H. Maruyama, T. Imatsuji, T. Hashizume, M. Tanaka, H. Nagai, T. Koiwasaki, T. Watanabe, Investigation of arc behavior and temperature distribution corresponding to electrode and phase configurations in a multiphase AC arc. J. Chem. Eng. Jpn. 53(1), 509–515 (2020). https://doi.org/10.1252/jcej.20we001
Y. Ozeki, T. Matsuo, M. Tanaka, T. Watanabe, Characteristics of water thermal plasma for biomass utilization system. J. Fluid Sci. Technol. 12(3), JFST0022 (2017). https://doi.org/10.1299/jfst.2017jfst0022
A. Pak, A. Sivkov, I. Shanenkov, I. Rahmatullin, K. Shatrova, Synthesis of ultrafine cubic tungsten carbide in a discharge plasma jet. Int. J. Refractory Metals Hard Mater. 48, 51 (2015). https://doi.org/10.1016/j.ijrmhm.2014.07.025
K. Park, Y. Hirayama, M. Shigeta, Z. Liu, M. Kobashi, K. Takagi, Anisotropic Sm-Co nanopowder prepared by induction thermal plasma. J. Alloys Compd. 882, 160633 (2021). https://doi.org/10.1016/j.jallcom.2021.160633
S.V. Patanker, Numerical Heat Transfer and Fluid Flow (McGraw Hill, New York, 1980)
J. Peters, Y. Yin, C.F.M. Borges, J. Heberlein, C. Hackett, Erosion mechanisms of hafnium cathodes at high current. J. Phys. D 38, 1781–1794 (2005). https://doi.org/10.1088/0022-3727/38/11/019
E. Pfender, Plasma jet behavior and modeling associated with the plasma spray process. Thin Solid Films 238, 228–241 (1994). https://doi.org/10.1016/0040-6090(94)90060-4
E. Pfender, J. Fincke, R. Spores, Entrainment of cold gas into thermal plasma jets. Plasma Chem. Plasma Process. 11, 529–543 (1991). https://doi.org/10.1007/BF01447164
P. Proulx, J. Mostaghimi, M.I. Boulos, Plasma-particle interaction effects in induction plasma modeling under dense loading conditions. Int. J. Heat Mass Transfer 28(7), 1327–1336 (1985). https://doi.org/10.1016/0017-9310(85)90163-2
P. Proulx, J. Mostaghimi, M.I. Boulos, Heating of powders in an r.f. inductively coupled plasma under dense loading conditions. Plasma Chem. Plasma Process. 7(1), 29–52 (1987). https://doi.org/10.1007/BF01015998
F. Quesnel, G. Soucy, J. Veilleux, P. Hovington, W. Zhu, K. Zaghib, Nanowires and nanostructures of lithium titanate synthesized in a continuous thermal plasma reactor. Chem. Eng. J. 306, 640–645 (2016). https://doi.org/10.1016/j.cej.2016.07.095
T.B. Reed, Induction-coupled plasma torch. J. Appl. Phys. 32(5), 821–824 (1961). https://doi.org/10.1063/1.1736112
C. Rehmet, F. Fabry, V. Rohani, F. Cauneau, L. Fulcheri, High speed video camera and electrical signal analyses or arc behavior in a 3-phase ac arc plasma torch. Plasma Chem. Plasma Process. 33, 779–796 (2013). https://doi.org/10.1007/s11090-013-9458-4
G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590 (2009). https://doi.org/10.1016/j.ijantimicag.2008.12.004
P.G. Rutberg, V.A. Kuznetsov, E.O. Serba, S.D. Popov, A.V. Surov, G.V. Nakonechny, A.V. Nikonov, Novel three-phase steam-air plasma torch for gasification of high-caloric waste. Appl. Energy 108, 505–514 (2013). https://doi.org/10.1016/j.apenergy.2013.03.052
A.A. Sadek, M. Ushio, F. Matsuda, Effect of rare earth metal oxide additions to tungsten electrodes. Metall. Trans. 21, 3221–3236 (1990). https://doi.org/10.1007/BF02647317
Y. Saito, K. Sato, H. Tanaka, K. Fujita, S. Matuda, Diamond synthesis from methane-hydrogen-water mixed gas using a microwave plasma. J. Mater. Sci. 23, 842–846 (1988). https://doi.org/10.1007/BF01153976
Y. Sakakibara, G. Katagiri, M. Toraguchi, T. Sakuta, Generation of large area inductively coupled plasma at atmospheric pressure with high frequency. In: Proc 4th Asia-Pacific Conf Plasma Sci. Sydney. Australia. 103 (1998)
M. Sakano, T. Watanabe, M. Tanaka, Numerical and experimental comparison of induction thermal plasma characteristics between 0.5 MHz and 4 MHz. J. Chem. Eng. Jpn. 32, 619–625 (1999). https://doi.org/10.1252/jcej.32.619
N. Sakura, M. Yoshida, M. Tanaka, T. Watanabe, Investigation of erosion mechanism of tungsten-based cathode in Ar-N2 DC arc. J. Phys. D 52(40), 404002 (2019). https://doi.org/10.1088/1361-6463/ab3139
N. Sakura, M. Yoshida, M. Tanaka, T. Watanabe, Investigation of electrode erosion mechanism in Ar-N2 DC arc based on visualization of electrode phenomena. Japanese J. Appl. Phys. 59(11), 116011 (2020). https://doi.org/10.35848/1347-4065/abbd7d
T. Sakuta, S. Oguri, T. Takashima, M.I. Boulos, Effects of plasma diameter and operating frequency on dynamic behavior of induction thermal plasma. Plasma Sources Sci. Technol. 2, 67–71 (1993). https://doi.org/10.1088/0963-0252/2/1/015
T. Sakuta, N. Sakashita, T. Yoshida, T. Takashima, M. Miyamoto, Generation of 50-kHz large area induction thermal plasma for high rate, uniform processing. IEEE Trans. Plasma Sci. 25, 1029–1033 (1997). https://doi.org/10.1109/27.649622
S. Samal, Synthesis of TiO2 nanoparticles from ilmenite through the mechanism of vapor-phase reaction process by thermal plasma technology. J. Mater. Eng. Perform. 27, 2622–2628 (2018). https://doi.org/10.1007/s11665-017-3060-5
A.V. Samokhin, N.V. Alekseev, S.A. Kornev, M.A. Sinaiskii, Y.V. Blagoveschenskiy, A.V. Kolesnikov, Tungsten carbide and vanadium carbide nanopowders synthesis in DC plasma reactor. Plasma Chem. Plasma Process. 33, 605 (2013). https://doi.org/10.1007/s11090-013-9445-9
A.V. Samokhin, V.A. Sinaiskii, N.V. Alekseev, E.V. Troitskaya, Y.V. Tsvetkov, Production of titanium nitride nanopowder from titanium hydride based on synthesis in thermal plasma. Inorganic Mater. Appl. Res. 5, 224–229 (2014). https://doi.org/10.1134/S2075113314030149
N. Sanders, E. Pfender, Measurement of anode falls and anode heat-transfer in atmospheric-pressure high-intensity arcs. J. Appl. Phys. 55(3), 714–722 (1984). https://doi.org/10.1063/1.333129
N. Sanders, K. Etemadi, K.C. Hsu, E. Pfender, Studies of the anode region of a high-intensity argon arc. J. Appl. Phys. 53, 4136–4145 (1982). https://doi.org/10.1063/1.331236
D.A. Scott, P. Kovitya, G.N. Haddad, Temperature in the plume of a dc plasma torch. J. Appl. Phys. 66, 5232–5239 (1989). https://doi.org/10.1063/1.343709
M.N. Seftejani, J. Schenk, M.A. Zahl, Reduction of haematite using hydrogen thermal plama. Materials 12(10), 1608 (2019). https://doi.org/10.3390/ma12101608
S. Semenov, B. Cetegen, Spectroscopic temperature measurements in direct current arc plasma jets used in thermal spray processing of materials. J. Thermal Spray Technol. 19(2), 326–336 (2001). https://doi.org/10.1361/105996301770349411
M. Shigeta, Turbulence modelling of thermal plasma flows. J. Phys. D 49, 493001 (2016). https://doi.org/10.1088/0022-3727/49/49/493001
M. Shigeta, T. Watanabe, Numerical analysis for co-condensation processes in silicide nanoparticle synthesis using induction thermal plasma at atmospheric pressure conditions. J. Mater. Res. 20, 2801–2811 (2005). https://doi.org/10.1557/JMR.2005.0351
M. Shigeta, T. Watanabe, Multi-component Co-condensation model of Ti-based boride/silicide nanoparticle growth in induction thermal plasmas. Thin Solid Films 515(9), 4217–4227 (2007a). https://doi.org/10.1016/j.tsf.2006.02.042
M. Shigeta, T. Watanabe, Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J Phys. D 40, 2407–2419 (2007b). https://doi.org/10.1088/0022-3727/40/8/S20
M. Shigeta, T. Watanabe, Two-directional nodal model for co-condensation growth of multi-component nanoparticles in thermal plasma processing. J. Therm. Spray Technol. 18, 1022–1037 (2009). https://doi.org/10.1007/s11666-009-9316-3
M. Shigeta, T. Watanabe, Growth model of binary alloy nanopowders for thermal plasma synthesis. J. Appl. Phys. 108, 043306 (2010). https://doi.org/10.1063/1.3464228
M. Shigeta, T. Watanabe, Effect of precursor fraction on silicide nanopowder growth under thermal plasma conditions: a computational study. Powder Technol. 288, 191–201 (2016). https://doi.org/10.1016/j.powtec.2015.11.005
D. Shin, B. Swain, C. Han, Y. Kim, C. Lee, K. Park, Comparison of different tungsten precursors for preparation of tungsten nanopowder by RF induction thermal plasma. Int. J. Refractory Metal Hard Mater. 86, 104995 (2020). https://doi.org/10.1016/j.ijrmhm.2019.104995
M. Shinde, A. Pawar, S. Karmakar, T. Seth, V. Raut, S. Rane, S. Bhoraskar, D. Amalnerkar, Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation. J. Nanoparticle Res. 11, 2043–2047 (2009). https://doi.org/10.1007/s11051-008-9569-7
S. Sikarwar, A. Maslani, M. Hlina, J. Fathi, T. Mates, M. Pohorely, E. Meers, M. Syc, M. Jeremias, Thermal plasma assisted pyrolysis and gasification of RDF by utilizing sequestered CO2 as gasifying agent. J. CO2 Util. 66, 102275 (2022). https://doi.org/10.1016/j.jcou.2022.102275
H.Y. Sohn, A. Murali, Plasma synthesis of advanced metal oxide nanoparticles and their applications as transparent conducting oxide thin films. Molecules 26, 1456 (2021). https://doi.org/10.3390/molecules26051456
H. Sone, T. Kagayama, M. Tanaka, D. Okamato, T. Watanabe, Induction thermal plasma synthesis of lithium oxide composite nanoparticles with a spinel structure. Jpn. J. Appl. Phys. 55(7S2), 07LE04 (2016). https://doi.org/10.7567/JJAP.55.07LE04
H. Sone, S. Yoshida, M. Tanaka, T. Watanabe, Thermal plasma synthesis and electrochemical electrochemical properties of high-voltage LiNi0.5Mn1.5O4 nanoparticles. Mater. Res. Express. 7(1), 015015 (2019). https://doi.org/10.1088/2053-1591/ab5f2e
H. Sone, S. Yoshida, T. Kageyama, M. Tanaka, T. Watanabe, Li–Ni-oxide nanoparticle synthesis by induction thermal plasmas. J. Chem. Eng. Jpn. 53(2), 78–83 (2020a). https://doi.org/10.1252/jcej.19we124
H. Sone, S. Yoshida, M. Tanaka, T. Watanabe, LiNiMn-oxide nanoparticle synthesis by induction thermal plasmas for lithium ion battery electrode. J. Ceram. Soc. Japan. 128(9), 635–640 (2020b). https://doi.org/10.2109/jcersj2.20087
N. Sponsel, S. Gershman, M. Quesada, J. Mast, K. Stapelmann, Electric discharge initiation in water with gas bubbles: a time scale approach. J. Vac. Sci. Technol. A 40, 063002 (2022). https://doi.org/10.1088/1361-6463/acfb1b
N. Sponsel, S. Gershman, K. Stapelmann, Electrical breakdown dynamics in an argon bubble submerged in conductive liquid for nanosecond pulsed discharges. J. Phys. D Appl. Phys. 56, 505202 (2023). https://doi.org/10.1088/1361-6463/acfb1b
J.R. Stallcop, E. Levin, J. Partridge, Transport properties of hydrogen. J. Thermophys. Heat Transfer 12, 514–519 (1998). https://doi.org/10.2514/2.6370
S. Subramaniam, D.R. White, Effect of shield gas composition on surface tension of steel droplets in a gas-metal-arc welding arc. Metall. Mater. Trans. B 32, 311–318 (1998). https://doi.org/10.1007/s11663-001-0054-2
S. Subramaniam, D.R. White, D.J. Scholl, W.H. Weber, In situ optical measurement of liquid drop surface tension in gas metal arc welding. J. Phys. D 31(16), 1963–1967 (2001). https://doi.org/10.1088/0022-3727/31/16/004
K. Tachibana, N. Takeuchi, K. Yasuoka, Reaction process of perfluorooctanesulfonic acid (PFOS) decomposed by DC plasma generated in argon gas bubbles. IEEE Trans. Plasma Sci. 42, 786–793 (2014). https://doi.org/10.1109/TPS.2014.2304520
H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 56, 2379–2380 (1990). https://doi.org/10.1063/1.102921
S. Takali, V.J. Rohani, Y. Cressault, F. Fabry, F. Cauneau, L. Fulcheri, 3-D flow modeling of a three-phase ac plasma torch working with air using a stationary source domain with gas radiation. IEEE Trans. Plasma Sci. 44(6), 996–1008 (2016). https://doi.org/10.1109/TPS.2016.2556720
A. Tamosiunas, P. Valatkevicius, V. Valincius, V. Grigaitiene, Production of synthesis gas from propane using thermal water vapor plasma. Int. J. Hydrog. Energy 39(5), 2078–2086 (2014). https://doi.org/10.1016/j.ijhydene.2013.11.134
A. Tamosiunas, D. Gimzauskaite, M. Aikas, R. Uscila, K. Zakarauskas, Waste glycerol gasification to syngas in pure DC water vapor arc plasma. Int. J. Hydrog. Energy 47, 12219–12230 (2022). https://doi.org/10.1016/j.ijhydene.2021.06.203
Y. Tanaka, T. Sakuta, Chemically non-equilibrium modeling of N2 thermal ICP at atmospheric pressure using reaction kinetics. J. Phys D 35, 468–476 (2002). https://doi.org/10.1088/0022-3727/35/5/309
M. Tanaka, M. Ushio, M. Ikeuchi, Y. Kagebayashi, In situ measurements of electrode work functions in free-burning arcs during operation at atmospheric pressure. J. Phys. d. 38, 29–35 (2005). https://doi.org/10.1088/0022-3727/38/1/007
Y. Tanaka, T. Muroya, K. Hayashi, Y. Uesugi, Generation of high-power arbitrary-waveform modulated inductively coupled plasmas for materials processing. Appl. Phys. Lett. 90, 071502 (2007). https://doi.org/10.1088/1742-6596/406/1/012001
Y. Tanaka, T. Nagumo, H. Sakai, Y. Uesugi, Y. Sakai, K. Nakamura, Nanoparticle synthesis using high-powered pulse-modulated induction thermal plasma. J. Phys. D 43, 265201 (2010). https://doi.org/10.1088/0022-3727/43/26/265201
M. Tanaka, Y. Tsuruoka, Y. Liu, T. Matsuura, T. Watanabe, Stability Analysis of Multi-Phase AC Arc Discharge for In-Flight Glass Melting. Current Appl. Phys. 11(5), S35–S39 (2011a). https://doi.org/10.1016/j.cap.2011.05.037
M. Tanaka, Y. Tsuruoka, Y. Liu, T. Watanabe, Investigation of multi-phase AC arc behavior by high-speed video observation. IEEE Trans. Plasma Sci. 39(11), 2904–2905 (2011b). https://doi.org/10.1109/TPS.2011.2149545
Y. Tanaka, T. Tsule, W. Gua, T. Uesugi, T. Ishijima, S. Watanabe, K. Nakamura, A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials. J. Phys. Conf. Ser. 40, 012001 (2012). https://doi.org/10.1088/1742-6596/406/1/012001
M. Tanaka, T. Ikeba, Y. Liu, S. Choi, T. Watanabe, High-speed visualization of electrode erosion in multiphase alternating current arc. J. Fluid Sci. Technol. 8(2), 160–171 (2013a). https://doi.org/10.1299/jfst.8.160
M. Tanaka, T. Ikeba, Y. Liu, S. Choi, T. Watanabe, Investigation of electrode erosion mechanism of multi-phase AC arc by high-speed video camera. J. Phys. Conf. Ser. 441, 012014 (2013b). https://doi.org/10.1088/1742-6596/441/1/012015
M. Tanaka, T. Hashizume, T. Imatsuji, Y. Nawata, T. Watanabe, Investigation of erosion mechanism of tungsten-based electrode in multi-phase AC arc by high-speed visualization of electrode phenomena. Jpn. J. Appl. Phys. 55(7S2), 0LC701 (2016). https://doi.org/10.7567/JJAP.55.07LC01
M. Tanaka, T. Imatsuji, T. Hashizume, T. Watanabe, H. Nagai, T. Koiwasaki, T. Okuma, Investigation of temperature characteristics of multiphase AC arc by high-speed visualization. J. Fluid Sci. Technol. 12(3), JFST0024 (2017). https://doi.org/10.1299/jfst.2017jfst0024
M. Tanaka, J.V. Heberlein, T. Watanabe, Initiation of anode material evaporation in a transferred arc device. In: Proc 19th Inter Symp Plasma Chem Bochum. Germany. P1,1–19 (2009)
L. Tang, H. Huang, Biomass gasification using capacitively couples RF plasma technology. Fuel 84(16), 2055–2063 (2005). https://doi.org/10.1016/j.fuel.2005.04.015
S. Tashiro, M. Tanaka, Effect of admixture of metal vapor on cathode surface temperature of plasma torch. Surf. Coat. Technol. 202, 5255–5258 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.140
R. Taylor, R. Ray, C. Chapman, Advanced thermal treatment of auto shredder residue and refuse derived fuel. Fuel 106, 401–409 (2013). https://doi.org/10.1016/j.fuel.2012.11.071
G. Thevenin, J. Poirier, P. Prigent, A. Fourcault, J. Robert-Arnouil, E. Edme, F. Marias, R. Demarthon, modelling and design of a refractory lining for a biomass gasification reactor fed by a plasma torch. Waste Biomass Valoriz. 5, 865–877 (2014). https://doi.org/10.1007/s12649-014-9292-9
M.K.S. Tial, Y. Tanaka, Y. Maruyama, T. Tsuchiya, T. Uesugi, T. Ihijima, Uniform surface oxidation of an si substrate by a planar modulated inductively coupled thermal plasma with molecular gas feed. Plasma Chem. Plasma Process. 38, 599–620 (2017). https://doi.org/10.1007/s11090-017-9803-0
L. Tong, R.G. Reddy, Synthesis of titanium carbide nano-powders by thermal plasma. Scr. Mater. 52, 1253–1258 (2005). https://doi.org/10.1016/j.scriptamat.2005.02.033
J.P. Trelles, S.M. Madirkhazeni, Variation multiscale method for nonequilibrium plasma flows. Comput. Methods Appl. Mech. Eng. 282, 87 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.058
Z. Turgut, D.E. Ferguson, M.Q. Huang, W.E. Wallace, M.E. Mchenry, Thermal plasma synthesis of γ-FeNx, nanoparticles as precursors for the Fe16N2 synthesis by annealing. MRS Online Proc. Library 577, 399–404 (1999). https://doi.org/10.1557/PROC-577-399
T. Uesugi, O. Nakamura, K. Akashi, T. Yoshida, A tandem radio-frequency torch. J. Appl. Phys. 64, 3874–3879 (1988). https://doi.org/10.1063/1.342486
G. Van Oost, M. Hrabovsky, V. Kopecky, M. Konrad, M. Hlina, T. Kavka, A. Chumak, E. Beeckman, J. Verstraeten, Pyrolysis of waste using a hybrid argon–water stabilized torch. Vacuum 80, 1132–1137 (2006). https://doi.org/10.1016/j.vacuum.2006.01.046
G. Van Oost, M. Hrabovsky, V. Kopecky, M. Konrad, M. Hlina, T. Kavka, Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas-water stabilized plasma torch. Vacuum 83(1), 209–212 (2009). https://doi.org/10.1016/j.vacuum.2008.03.084
A. Vorobev, O. Zikanov, P. Mohanty, Modelling of the in-flight synthesis of TaC nanoparticles from liquid precursor in thermal plasma jet. J. Phys. D 41, 085302 (2008a). https://doi.org/10.1088/0022-3727/41/8/085302
A. Vorobev, O. Zikanov, P. Mohanty, A co-condensation model for in-flight synthesis of metal-carbide nanoparticles in thermal plasma jet. J. Therm. Spray Technol. 17, 956–965 (2008b). https://doi.org/10.1007/s11666-008-9240-y
Y. Wang, Z. Cui, Z. Zhang, Synthesis and phase structure of tantalum nanoparticles. Mater. Lett. 58, 3017 (2004). https://doi.org/10.1016/j.matlet.2004.05.031
Y. Wang, X. Zhang, B. Min, M. Tanaka, T. Watanabe, Synthesis of amorphous Li3BO3 nanoparticles as solid electrolyte for all-solid-state battery by induction thermal plasma. J. Solid State Chem. 318, 123775 (2023a). https://doi.org/10.1016/j.jssc.2022.123775
Y. Wang, B. Min, M. Tanaka, T. Watanabe, Formation mechanism of amorphous Li4GeO4 nanoparticles synthesized by induction thermal plasma for all-solid-sate battery. J. Phys. Chem. C 137(20), 9964–9972 (2023b). https://doi.org/10.1021/acs.jpcc.3c02465
T. Watanabe, Water plasma generation under atmospheric pressure for waste treatment. ASEAN J. Chem. Eng. 5, 30–34 (2005). https://doi.org/10.2146/ajche.50161
T. Watanabe, Hydrogen synthesis from wastes by water thermal plasmas. J. Plasma Fusion Res. 95(1), 27–33 (2019)
T. Watanabe, H. Okumiya, Formation mechanism of silicide nanoparticles by induction thermal plasmas. Sci. Technol. Adv. Mater. 5(5–6), 639–646 (2004). https://doi.org/10.1016/j.stam.2004.03.015
T. Watanabe, T. Tsuru, Water plasma generation under atmospheric pressure for HFC destruction. Thin Solid Films 516(13), 4391–4396 (2008). https://doi.org/10.1016/j.tsf.2007.10.062
T. Watanabe, N. Atsuchi, M. Shigeta, Two-Temperature chemically non-equilibrium modeling of argon induction plasmas with diatomic gases. Inter. J. Heat Mass Transfer. 49, 4867–4876 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.039
T. Watanabe, N. Atsuchi, M. Shigeta, Modeling of non-equilibrium argon-hydrogen induction plasmas under atmospheric pressure. Thin Solid Films 515(9), 4209–4216 (2007). https://doi.org/10.1016/j.tsf.2006.02.100
T. Watanabe, M. Tanaka, T. Shimizu, F. Liang, Metal nanoparticle production by anode jet of argon-hydrogen dc arc. Adv. Mater. Res. 628, 11–14 (2013). https://doi.org/10.4028/www.scientific.net/AMR.628.11
T. Watanabe, Y. Liu, M. Tanaka, Investigation of electrode phenomena in an innovative thermal plasma for glass melting. Plasma Chem. Plasma Process. 34(3), 443–456 (2014). https://doi.org/10.1007/s11090-014-9530-8
T. Watanabe, S. Zen, N. Takeuchi, Investigations on plasma parameters of diaphragm discharge plasma based on optical emission spectroscopy. Jpn. J. Appl. Phys. 62, 1006 (2023). https://doi.org/10.35848/1347-4065/accbc8
A.S. Westover, A.K. Kercher, M. Kornbluth, M.J. Palmer, D.A. Cullen, N.J. Dudney, Plasma synthesis of spherical crystalline and amorphous electrolyte nanopowders for solid-state batteries. ACS Appl. Mater. Interfaces 12(10), 11570–11578 (2020). https://doi.org/10.1021/acsami.9b20812
K.P. Willis, S. Osada, K.L. Willerton, Plasma gasification: lessons learned at Eco-Valley WTE facility. In: Proceedings of the 18th annual north american waste-to-energy conference. Florida. USA. (2010) https://doi.org/10.1115/NAWTEC18-3515
Q. Wang, Y. Xin, B. Sun, Characteristics of liquid-phase continuous arc discharge plasma, Plasma Process. Polym. 19, e2200046 (2022a). https://doi.org/10.1002/ppap.202200046
Y. Xin, Q. Wang, J. Sun, B. Sun, Plasma in aqueous methanol: influence of plasma initiation mechanism on hydrogen production. Appl. Energy 325, 119892 (2022). https://doi.org/10.1016/j.apenergy.2022.119892
Y. Xu, H. Jin, T. Hiranoa, Y. Matsushitac, J. Zhang, Characterization of Ni3Sn intermetallic nanoparticles fabricated by thermal plasma process and catalytic properties for methanol decomposition. Sci. Technol. Adv. Mater. 20, 622 (2019). https://doi.org/10.1080/14686996.2019.1622447
S. Xue, P. Proulx, M.I. Boulos, Extended-field electromagnetic model for inductively coupled plasma. J Phys. D 34(12), 1897–1906 (2001). https://doi.org/10.1088/0022-3727/34/12/321
V. Yakhot, S.A. Orszag, Recormlization group analysis of turbulence I. Basic theory. J. Sci. Comput. 1, 3–51 (1986). https://doi.org/10.1007/BF01061452
K. Yamamoto, M. Tanaka, S. Tashiro, K. Nakata, K. Yamazaki, E. Yamamoto, K. Suzuki, A.B. Murphy, Numerical simulation of metal vapor behavior in arc plasma. Surf. Coat. Technol. 202, 5302–5305 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.079
K. Yamazaki, E. Yamamoto, K. Suzuki, F. Koshiishi, S. Tashiro, M. Tanaka, K. Nakata, Measurement of surface temperature of weld pools by infrared two color pyrometry. Sci. Technol. Weld. Join. 15, 40–47 (2010). https://doi.org/10.1179/136217109X12537145658814
G. Yang, J. Heberlein, Anode attachment modes and their formation in a high intensity argon arc. Plasma Sources Sci. Technol. 16(3), 529–542 (2007a). https://doi.org/10.1088/0963-0252/16/3/012
G. Yang, J. Heberlein, Instabilities in the anode region of atmospheric pressure arc plasmas. Plasma Sources Sci. Technol. 16(4), 765–773 (2007b). https://doi.org/10.1088/0963-0252/16/4/011
G. Yang, P. Cronin, J.V. Heberlein, E. Pfender, Experimental investigations of the anode boundary layer in high intensity arcs with cross flow. J Phys. D 39(13), 2764–2774 (2006). https://doi.org/10.1088/0022-3727/39/13/020
I. Yayalik, A. Koyun, M. Akgun, Gasification of municipal solid wastes in plasma arc medium. Plasma Chem. Plasma Process. 40(6), 1401–1416 (2020). https://doi.org/10.1007/s11090-020-10105-y
R. Ye, J.G. Li, T. Ishigaki, Controlled synthesis of alumina nanoparticles using inductively coupled thermal plasma with enhanced quenching. Thin Solid Films 515, 4251–4257 (2007). https://doi.org/10.1016/j.tsf.2006.02.050
H. Yoo, M. Kim, Y.T. Kim, J. Choi, Reuse of wastewater discharged from thermal-plasma decomposition of chlorodifluoromethane. Production of titanium dioxide nanopowder. J. Clean. Prod. 250, 7 (2020). https://doi.org/10.1016/j.jclepro.2019.119542
T. Yoshida, The future of thermal plasma processing. Mater. Trans. JIM 31(1), 1–11 (1990). https://doi.org/10.2320/matertrans1989.31.1
T. Yoshida, A. Kawasaki, K. Nakagawa, K. Akashi, The synthesis of ultrafine titanium nitride in an r.f. plasma. J. Mater. Sci. 14, 1624–1630 (1979). https://doi.org/10.1007/BF00569282
T. Yoshida, T. Tani, H. Nishimura, K. Akashi, Characterization of a hybrid plasma and its application to a chemical synthesis. J. Appl. Phys. 54, 640–646 (1983). https://doi.org/10.1063/1.332070
M.H. Yuan, T. Narengerile, C.Y.C. Watanabe, DC water plasma at atmospheric pressure for the treatment of aqueous phenol. Env. Sci. Technol. 44(12), 4710–4715 (2010). https://doi.org/10.1021/es9038598
S. Zen, N. Takeuchi, Y. Teramoto, Ammonia synthesis using atmospheric pressure fluidized bed plasma. J. Phys. D Appl. Phys. 57, 115203 (2023)
X. Zhang, R. Hayashida, M. Tanaka, T. Watanabe, Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Powder Technol. 371, 26 (2020). https://doi.org/10.1016/j.powtec.2020.05.084
X. Zhang, Y. Wang, B. Min, E. Kumai, M. Tanaka, T. Watanabe, A controllable and byproduct-free synthesis method of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Adv. Powder Technol. 32, 2828 (2021a). https://doi.org/10.1016/j.apt.2021.06.003
X. Zhang, B. Min, Y. Wang, R. Hayashida, M. Tanaka, T. Watanabe, Preparation of carbon-coated silicon nanoparticles with different hydrocarbon gases in induction thermal plasma. J. Phys. Chem. C 125, 15551 (2021b). https://doi.org/10.1021/acs.jpcc.1c03209
X. Zhang, Z. Liu, M. Tanaka, T. Watanabe, Formation mechanism of amorphous silicon nanoparticles with additional counter-flow quenching gas by induction thermal plasma. Chem. Eng. Sci. 230, 116217 (2021c). https://doi.org/10.1016/j.ces.2020.116217
X. Zhao, B. Sun, T. Zhu, X. Zhu, Z. Yan, Y. Xin, X. Sun, Pathways of hydrogen-rich gas produced by microwave discharge in ethanol-water mixtures. Renew. Energ. 156, 768–776 (2020). https://doi.org/10.1016/j.renene.2020.04.088
X. Zhou, J. Heberlein, Analysis of the arc-cathode interaction of free-burning arcs. Plasma Sources Sci. Technol. 3(4), 564 (1994). https://doi.org/10.1088/0963-0252/3/4/014
X. Zhou, J. Heberlein, Characterization of the arc cathode attachment by emission spectroscopy and comparison to theoretical predictions. Plasma Chem. Plasma Process. 15, S229–S244 (1995). https://doi.org/10.1007/BF01512637
X. Zhou, B.J. Ding, J. Heberlein, Temperature measurement and metallurgical study of cathodes in DC arcs. IEEE Trans. Components Packaging Technol. 19, 320–328 (1996). https://doi.org/10.1109/95.536833
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
I confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Watanabe, T. Thermal plasma system for innovative materials processing. Rev. Mod. Plasma Phys. 9, 21 (2025). https://doi.org/10.1007/s41614-025-00196-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41614-025-00196-5
Keywords
Profiles
- Takayuki Watanabe View author profile