Skip to main content
Log in

Thermal Plasma Synthesis of γ-FeNx Nanoparticles as Precursors for the Fe16N2 Synthesis by Annealing

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

An ordered Fe16N2 phase has been reported with iron moments as high as 3.2 μB. It is precipitated from nitrogen martensite structures ideally containing 10.5 at.% nitrogen. Due to the highly distorted crystal structure and metastability of this phase non-equilibrium processing routes are sought to synthesize this phase. Here we report on radio frequency (RF) plasma torch synthesis which is used to produce FeN. nanoparticles quenched into a body centered tetragonal bct) structure as precursors for further annealing studies to form α“- Fe16N2 phase. We have employed a Tekna PL-50 type 50 kW, RF plasma torch. A plasma gas mixture containing 40 standard liters per minute (slpm) Ar and 8 slpm Hydrogen - 70 slpm Ar gas was used as a sheath gas. Iron powder ( < 10 μm) was injected into the plasma stream using Ar flowing 15 slpm as a carrier gas. Nitrogen and Ammonia were used as a nitrogenization sources. Relatively low injection rates were used in order to achieve smaller particle sizes and thus faster quenching rates. We were able to produce particles containing up to 45 % of the quenched γ-phase. Observations based on x-ray diffraction (XRD) determination of lattice expansion and phase transition temperatures observed by differential thermal analysis (DTA) indicated that the quenched phase contains 6.5 atomic % nitrogen. Scherrer analysis of the fine particle broadening indicated that the average particle size for γ- phase is 27 nm, whereas this value is found to be 55 nm. for α-Fe. Nitrogen is well known for its grain size refinement in Fe thin films. Saturation magnetizations were found to be as low as 123 emu/g due to the presence of the nonmagnetic γ-FeNx phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. K. H. Jack, J. Appl. Phys. 76, 6620 (1994); Proc. R. Soc. London, Ser. A 208, 216 (1951).

    Article  CAS  Google Scholar 

  2. T. K. Kim and M. Takahashi, Appl. Phys. Lett. 20 492 (1972).

    Article  CAS  Google Scholar 

  3. Y. Sugita, K. Mitsuoka, M. Komuro, H. Hoshiya, Y. Kozono and M. Hanazono, J. Appl. Phys. 70, 5977 (1991).

    Article  CAS  Google Scholar 

  4. P. Bezdicka, A. Klarikova, I. Paseka and K. Zaveta, J. Alloys Comps. 274 10 (1998).

    Article  CAS  Google Scholar 

  5. J. M. Coey, K. O’Donnell, Q. Qinian, E. Touchais and K. H. Jack, J. Phys.: Condens. Matter 6, L23 (1994).

    CAS  Google Scholar 

  6. T. Weber, L. de Wit, F. W. Saris and P. Schaff, Thin solid Films 279, 216 (1996).

    Article  CAS  Google Scholar 

  7. R. M. Metzger, X. Bao and M. Carbucicchio, J. Appl. Phys. 76, 6626 (1994).

    Article  CAS  Google Scholar 

  8. K. H. Jack, J. Appl. Phys. 76, 6620 (1994).

    Article  CAS  Google Scholar 

  9. A. Sakuma, J. Magn. Magn. Mater. 102, 127 (1991).

    Article  CAS  Google Scholar 

  10. B. I. Min, Phys. Rev. B 46, 8232 (1992).

    Article  CAS  Google Scholar 

  11. R. Coehoorn, G. H. O. Daalderop and H. J. F. Jansen, Phys. Rev. B 48, 3830 (1993).

    Article  CAS  Google Scholar 

  12. K. Umino, H. Nakajima and K. Shiiki, J. Magn. Magn. Mater. 153, 323 (1996).

    Article  CAS  Google Scholar 

  13. H. Nakajima, Y. Ohashi and K. Shiiki, J. Magn. Magn. Mater. 167, 259 (1997).

    Article  CAS  Google Scholar 

  14. S. Ishida, K. Kitawatase, S. Fujii and S. Asano, J. Phys. Condens. Matter 4, 765 (1992).

    Article  CAS  Google Scholar 

  15. Y. Sugita, H. Takahashi, M. Komuro, K. Mitsuoka and A. Sakuma, J. Appl. Phys. 76, 6637 (1994).

    Article  CAS  Google Scholar 

  16. D. C. Sun, E. Y. Jiang and D. Sun, Thin solid Films 298, 116 (1997).

    Article  CAS  Google Scholar 

  17. K. Nakajima, S. Okamoto and T. Okada, J. Appl. Phys. 65, 4357 (1989).

    Article  CAS  Google Scholar 

  18. M. Takahashi, H. Shoji, H. Takahashi, T. Wakiyama, M. Dio and M. Matsiu, J. Appl. Phys. 76, 6642 (1994).

    Article  CAS  Google Scholar 

  19. J. M. D. Coey, J. Appl. Phys. 76, 6632 (1994).

    Article  CAS  Google Scholar 

  20. M. Q. Huang, W. E. Wallace, S. Simizu and S. G. Sankar, J. Magn. Magn. Mater. 135, 226 (1994).

    Article  CAS  Google Scholar 

  21. W. E. Wallace and M. Q. Huang, J. Appl. Phys. 76, 6648 (1994).

    Article  CAS  Google Scholar 

  22. M. J. van Genderen, A. Bottger, R. J. Cernik and E. J. Mittemeier, Metall. Trans. A 21A, 1965 (1993).

    Article  Google Scholar 

  23. M. J. Van Genderen, A. Bottger and E. J. Mittemeijer, Metall. Trans A 28A, 63 (1997).

    Article  Google Scholar 

  24. H. A. Wriedth, N. A. Gogcen and R. H. Nofzinger, Bull. Alloy Phase Diagrams 8, 355 (1987)

    Article  Google Scholar 

  25. A. Kano, N. S. Kazama and H. Fujimori, J. Appl. Phys. 53, 8332 (1982).

    Article  CAS  Google Scholar 

  26. D-L. Peng, K. Sumiyama and K Suzuki, J. Alloys Comps. 259,1 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgut, Z., Ferguson, D.E., Huang, M.Q. et al. Thermal Plasma Synthesis of γ-FeNx Nanoparticles as Precursors for the Fe16N2 Synthesis by Annealing. MRS Online Proceedings Library 577, 399–404 (1999). https://doi.org/10.1557/PROC-577-399

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-577-399