Skip to main content
Log in

Production of titanium nitride nanopowder from titanium hydride based on synthesis in thermal plasma

  • Plasma Chemical Methods of Production and Treatment of Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The synthesis of TiN nanopowder from titanium hydride in thermal plasma generated in DC arc plasmatron is investigated experimentally. It is shown that a single-phase TiN nanopowder can be produced within a two-stage process consisting of plasma synthesis and separation of powdered product by means of sedimentation. The yield of nanopowder is up to 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shaw, D. and Liu, B., Handbook of Micro and Nanoparticle Science and Technology, New York: Springer-Verlag, 2010.

    Google Scholar 

  2. Hosokawa, M., Nogi, K., Naito, M., and Yokoyama, T., Nanoparticle Technology Handbook, Amsterdam: Elsevier, 2008.

    Google Scholar 

  3. Gogotsi, Yu., Nanomaterials Handbook, Zug, Switzerland: CRC, 2006.

    Book  Google Scholar 

  4. Koch, C.C., Nanostructured Materials: Processing, Properties and Applications, New York: William Andrew, 2006.

    Google Scholar 

  5. Wang, Z.L., Liu, Y., and Zhang, Z., Handbook of Nanophase and Nanostructured Materials, New York: Springer-Verlag, 2002.

    Google Scholar 

  6. Pierson, H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications. Materials Science and Process Technology, New York: William Andrew, 1997.

    Google Scholar 

  7. Svoistva, poluchenie i primenenie tugoplavkikh soedinenii (Properties, Production and Application of Refractory Compounds) Kosolapova, T.Ya., Ed., Moscow: Metallurgiya, 1986.

    Google Scholar 

  8. Handbook of Nanostructured Materials and Nanotechnology, Nalwa, H.S., Ed., New York: Academic, 1999.

    Google Scholar 

  9. Kaskel, S., Schlichte, K., and Kratzke, T., Catalytic properties of high surface area titanium nitride materials, J. Mol. Catal. A: Chemical, 2004, vol. 208, pp. 291–298.

    Article  CAS  Google Scholar 

  10. Kakati, M., Bora, B., Sarma, S., Saikia, B.J., Shripathi, T., Deshpande, U., Dubey, A., Ghosh, G., and Das, A.K., Synthesis of titanium oxide and titanium nitride nanoparticles with narrow size distribution by supersonic thermal plasma expansion, Vacuum, 2008, vol. 82, pp. 833–841.

    Article  CAS  Google Scholar 

  11. Caron, S., Gitzhofer, F., Dhers, J., and Godbout, N., Titanium nitride synthesis using induction plasma technology, Proc. 15th Int. Symp. on Plasma Chemistry (ISPC 15), Orleans, France, 2001.

    Google Scholar 

  12. Batenin, V.M., Klimovskii, I.I., Lysov, G.V., and Troitskii, V.N., SVCh-generatory plazmy. Fizika, tekhnika, primenenie (SHF-Generators of Plasma. Physics, Technique, Application), Moscow: Energoatomizdat, 1988.

    Google Scholar 

  13. Miller, T.N. and Grabis, Ya.P., Plasma-chemical synthesis of refractory nitrides, in Metody polucheniya, svoistva i oblasti primeneniya nitridov (Methods of Production, Properties and Areas of Application of Nitrides), Riga: Zinatne, 1980, pp. 5–6.

    Google Scholar 

  14. Alekseev, N.V., Kurkin, E.I., Samokhin, A.V., Balikhin, I.L., and Troitskaya, E.V., Synthesis of ultradispersed powders of titanium nitride and carbonitride in the nitrogen jet of arc discharge plasma, Fiz. Khim. Obrab. Mater., 1995, No. 1, pp. 31–39.

    Google Scholar 

  15. Commission recommendation of XXX on the definition of nanomaterial. European Commission, Brussels, 2011. http://ec.europa.eu/environment/chemicals/nanotech/pdf/commission-recommendation.pdf

  16. Alekseev, N.V., Samokhin, A.V., and Tsvetkov, Yu.V., RF Patent No. 2311225, 2007.

  17. Kiss, L.B., Soderlund, J., Niklasson, G.A., and Granqvist, C.G., New approach to the origin of lognormal size distributions of nanoparticles, Nanotechnology, 1999, No. 10, pp. 25–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Samokhin.

Additional information

Original Russian Text © A.V. Samokhin, V.A. Sinaiskii, N.V. Alekseev, E.V. Troitskaya, Yu.V. Tsvetkov, 2013, published in Fizika i Khimiya Obrabotki Materialov, 2013, No. 4, pp. 24–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samokhin, A.V., Sinaiskii, V.A., Alekseev, N.V. et al. Production of titanium nitride nanopowder from titanium hydride based on synthesis in thermal plasma. Inorg. Mater. Appl. Res. 5, 224–229 (2014). https://doi.org/10.1134/S2075113314030149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314030149

Keywords