Skip to main content
Log in

Tungsten Carbide and Vanadium Carbide Nanopowders Synthesis in DC Plasma Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Air–methane and nitrogen–hydrogen DC thermal plasma confined flows were used to synthesize tungsten carbide and vanadium carbide nanopowders. The influence of input process parameters such as C/W and C/V molar ratio, plasma jet chemical composition, plasma jet enthalpy, and reactants flow rates on the average nanoparticle size, chemical and crystallographic phase compositions were investigated. During post heat treatment, the synthesized MeC1−x nanopowders were fully carburized to monocarbides WC and VC with particles size less than 80 and 40 nm correspondently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Schubert W, Neumeister H, Kinger G (1998) Hardness to toughness relationship of fine-grained hardmetals. Int J Refract Met Hard Mater 16:133–142

    Article  CAS  Google Scholar 

  2. Dagani R (1992) Nanostructured materials promise to advance range of technologies. Chem Eng News 23:18–24

    Google Scholar 

  3. Ashley S (1994) Small-scale structure yields big property payoffs. Mech Eng 2:52–57

    Google Scholar 

  4. Panov V (2007) Nanotechnologies in production of solid alloys (Review). Russ J of Non-Ferrous Met 48:148–152

    Article  Google Scholar 

  5. Wu X, Zhang W, Wang W et al (2004) Ultrafine WC-10Co cemented carbides fabricated by electric-discharge compaction. J Mater Res 19:2240–2244

    Article  CAS  Google Scholar 

  6. Wu X, Guo J (2008) Electric-discharge compaction of graded WC–Co composites. Int J Refract Met Hard Mater 26:28–32

    Article  CAS  Google Scholar 

  7. Shi X, Shao G, Duan X et al (2006) Characterizations of WC–10Co nanocomposite powders and subsequently sinterhip sintered cemented carbide. Mater Charact 57:358–370

    Article  CAS  Google Scholar 

  8. Kurlov A, Leenaers A, van den Berghe Sea (2011) Microstructure of nanocrystalline WC powders and WC–Co hard alloys. Rev Adv Mater Sci 27:165–172

    CAS  Google Scholar 

  9. McCandlish L, Kear B, Kim B (1992) Processing and properties of nanostructured WC–Co. Nanostruct Mater 1:119–124

    Article  CAS  Google Scholar 

  10. Mi S, Courtney T (1997) Synthesis of WC and WC–Co cermets by mechanical alloying and subsequent hot isostatic pressing. Scripta Mater 38:171–176

    Article  Google Scholar 

  11. Xueming M, Gang J, Ling Z (1998) Structure and properties of bulk nano-structured WC–CO alloy by mechanical alloying. J Alloys Compd 470:262–267

    Google Scholar 

  12. Chang WS, Skandan G, Hahn H et al (1994) Chemical vapor condensation of nanostructured ceramic powders. Nanostruct Mater 4:345–351

    Article  CAS  Google Scholar 

  13. Dong X, Choi C, Kim B (2002) Chemical synthesis of Co nanoparticles by chemical vapor condensation. Scripta Mater 47:857–861

    Article  CAS  Google Scholar 

  14. Kim J, Kim B (2004) Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process. Scripta Mater 50:969–972

    Article  CAS  Google Scholar 

  15. Fridman A (2008) Plasma chemistry. Cambridge University Press

  16. Vollath D (2008) Plasma synthesis of nanopowders. J Nanoparticle Res 10:39–57

    Article  CAS  Google Scholar 

  17. Fang Z, Wang X, Tea Ryu (2009) Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review. Int J Refract Met Hard Mat 27:288–299

    Article  CAS  Google Scholar 

  18. Ryu T, Sohn H, Hwang K et al (2009) Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int J Refract Met Hard Mat 27:149–154

    Article  CAS  Google Scholar 

  19. Ryu T, Sohn H, Hwang K et al (2009) Plasma synthesis of tungsten carbide nanopowder from ammonium paratungstate. J Am Ceram Soc 92:655–660

    Article  CAS  Google Scholar 

  20. Ryu T, Sohn H, Hwang K et al (2008) Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures. J Mater Sci 43:5185–5192

    Article  CAS  Google Scholar 

  21. Ryu T, Sohn H, Hwang K et al (2009) Plasma synthesis of tungsten carbide and cobalt nanocomposite powder. J Alloys Compd 481:274–277

    Article  CAS  Google Scholar 

  22. Grabis J, Zalite I, Jankovica D, Rasmane D (2004) Preparation of nanosized W and WC based powders and their processing. Proc Est Acad Sc Eng 10(1):23–29

    CAS  Google Scholar 

  23. Fan Y, Fu L, Yang J (1996) Preparation of nanosized WC–Co composite powders by plasma. J Mater Sci Let 15:2184–2187

    Article  CAS  Google Scholar 

  24. Patent of Russian Federation No. 2311225 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samokhin, A.V., Alekseev, N.V., Kornev, S.A. et al. Tungsten Carbide and Vanadium Carbide Nanopowders Synthesis in DC Plasma Reactor. Plasma Chem Plasma Process 33, 605–616 (2013). https://doi.org/10.1007/s11090-013-9445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9445-9

Keywords