Skip to main content

Physical Photons: Theory, Experiment and Implications

  • Chapter
Quantum Uncertainties

Part of the book series: NATO ASI Series ((NSSB,volume 162))

Abstract

A physical model of the photon is presented. It is a solution of Maxwell’s equations confined within a finite region of space—time along the photon’s axis of propagation. The rotating/oscillating electromagnetic field has the observed photon—eigenvalues of linear and intrinsic (spin) angular momentum. The model predicts two angular momentum eigenstates having either positive or negative helicity (left or right circular polarization).

The finite region containing the field is defined by the relativistic principle that congruent events within it are causally connected (separated by timelike intervals). The region is a circular ellipsoid whose major axis and cross—sectional circumference are both one wavelength long. Excited states of the field containing two or more quanta of energy within the same ellipsoidal volume represent multiphotons.

This physical model of the photon is consistent with experimental properties of electromagnetic radiation, including photon bunching and anti—bunching, multiphoton absorption, and the transmission of microwaves through apertures. A microwave experiment designed to measure the photon’s diameter is reported; the measured value accords with the theoretical model’s prediction within the experimental error of half a percent.

The finite—field model of the photon is both a particle and a wave, and hence we refer to it by Eddington’s name “wavicle”. That the wavicle’s position is essentially uncertain within the size of its finite domain leads to the idea that the minimum quantum of action arises because the particle cannot transfer its momentum in less time than it takes to traverse the length of its own domain. Its minimum action (equal to Planck’s constant) is the product of its length and its momentum.

Thus the dichotomy of the wave—particle duality of light is replaced by a unity, and the schism between the Copenhagen philosophy of fundamental indeterminacy and the contrary, determinist, view that indeterminacy is only an experimental limitation, is resolved in favour of the latter, because internally the wavicle is classical and causal, but its interactions necessarily involve non—causal, space—like intervals, and hence in interactions (i.e. measurements) the indeterminacy of established quantum mechanics prevails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andrews, C. L., Optics of the Electromagnetic Spectrum, p. 328 ( Prentice-Hall, Englewood Cliffs, N.J., 1960 ).

    Google Scholar 

  • Bandyopadhyay, P. and P. Raychaudhuri, Phys. Rev. 3, 1378 (1971).

    ADS  Google Scholar 

  • Belinfante, F. J., A Survey of Hidden Variable Theories ( Pergamon Press, Oxford, 1973 ).

    Google Scholar 

  • Bethe, H. A., Intermediate Quantum Mechanics, (Benjamin, New York, 1964 ).

    Google Scholar 

  • Bohm, D., The Special Theory of Relativity, Ch.28 and pp.177–178 ( Benjamin, New York, 1965 ).

    Google Scholar 

  • Buonomano, V., 1986 (These Proceedings).

    Google Scholar 

  • Chin, S. L. and P. Lambropoulos (Editors) Multiphoton Ionisation of Atoms ( Academic Press. New York, 1984 ).

    Google Scholar 

  • Coulson, C. A., Waves, 7th Ed., p. 103 ( Oliver & Boyd, London, 1955 ).

    Google Scholar 

  • Craig, D. P. and T. Thirunamachandran, Molecular Quantum Electrodynamics, p. 25 ( Academic Press, London, 1984 ).

    Google Scholar 

  • Dewdney, C., A. Garuccio, A. Kyprianidis and J. P. Vigier, Phys. Lett. 105A, 15 (1984).

    Article  Google Scholar 

  • Diner, S., D. Fargue, G. Lochak and F.Selleri (Editors), The Wave-Particle Dualism (D. Reidel Company, Dordrecht, Holland, 1984 ).

    Google Scholar 

  • Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Ed. p.9 (Oxford University Press, 1967 ).

    Google Scholar 

  • Dontsov, P., and A. I. Baz, Sov. Phys JETP, 25, 1 (1967).

    ADS  Google Scholar 

  • Einstein, A., Ann. Phys. 17, 1905; reprinted in English translation in The Principle of Relativity, pp.56–58 (Dover Publications, 1952 ).

    Google Scholar 

  • Fewkes, J. H. and J. Yarwood, Electricity and Magnetism, pp.509–513 ( University Tutorial Press, London, 1956 ).

    Google Scholar 

  • Grangier, P., G. Roget and A. Aspect, Europhysics Letters, Feb. 1986.

    Google Scholar 

  • Green, H. S., and E. Wolf, Proc. Phys. Soc. 66, 1129 (1953).

    Article  MathSciNet  Google Scholar 

  • Held, B., G. Mainfray, C. Manus, and J. Morellec, Phys. Lett. 35A, 257 (1971).

    Google Scholar 

  • Hendry, J., The Creation of Quantum Mechanics and the Bohr-Pauli Dialogue (Reidel Pub. Co., Dordrecht, Holland, 1984 ).

    Google Scholar 

  • Honig, W., Found. Phys. 4. 367 (1974).

    Article  ADS  Google Scholar 

  • Hunter, G., and H. O. Pritchard, J. Chem. Phys, 46, 2146 (1967).

    Article  ADS  Google Scholar 

  • Hunter, G., 1986, The Covariant Wave Equation (to be published).

    Google Scholar 

  • Jammer, M., Concepts of Mass, Harvard University Press, Cambridge, Massachusetts, U.S.A. (1961).

    Google Scholar 

  • Jeffers, S., (These Proceedings).

    Google Scholar 

  • King, R. W. P., and T. T. Wu, The Scattering and Diffraction of Waves, Harvard University Press, Cambridge, Massachusetts, U. S. A. (1959).

    Google Scholar 

  • Knight, D. L., and L. Allen, Concepts of Quantum Optics, p. 174 ( Permagon Press, Oxford, 1982 ).

    Google Scholar 

  • Kostro, L., Physics Letters, 107A, 429 (1985).

    Article  Google Scholar 

  • Kraus, J. D., Antennas, p. 178 ( McGraw-Hill, New York, 1950 ).

    Google Scholar 

  • Lawden, D. F., An Introduction to Tensor Calculus and Relativity, pp. 17–20 ( Methuen, London, 1962 ).

    Google Scholar 

  • Levitt, S., Lett. Nuovo Cimento 21, Ser. 2, 222 (1978).

    Google Scholar 

  • Lewis, G. N., Nature, 118, 874 (1926).

    Article  ADS  Google Scholar 

  • Loudon, R., The Quantum Theory of Light, 2nd Edition, pp.226-228 ( Clarendon Press, Oxford, 1983 );

    Google Scholar 

  • Love, A. E. H., Proc. London Math. Soc., Ser. 2, 1, 37 (1903).

    Google Scholar 

  • MacKinnon, L., Lett. Nuovo Cimento, 32, 311 (1981).

    Article  Google Scholar 

  • McQuarrie, D. A., Quantum Chemistry, p.78 and p. 83–87 ( University Science Books, Mill Valley, California, 1983 ).

    Google Scholar 

  • Nishiyama, Y., J. Phvs. Soc. Japan 43, 228 (1977).

    Article  Google Scholar 

  • Panarella, E., 1974, Found. Phys. 4, 227 (1974).

    Google Scholar 

  • Panarella, E., 1977, Phvs Rev. A16, 677 (1977).

    ADS  Google Scholar 

  • Panarella, E., and T. E. Phipps Jr., Spec. Sci. Tech. 5, 509 (1982).

    Google Scholar 

  • Panareila, E., 1985, Spec. Sci. Tech. 8, 35 (1985).

    Google Scholar 

  • Paul, H., Rev. Mod. Phys, 58, 209 (1986).

    Article  ADS  Google Scholar 

  • Pipkin, F. M., in Advances in Atomic and Molecular Physics (Edited by D. R. Bates), 14, 294 (1978).

    Google Scholar 

  • Pfleegor, R. L. and L. Mandel, Phys Rev., 159, 1084 (1967).

    Article  ADS  Google Scholar 

  • Stratton, J. A., P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbato, Spheroidal Wavefunctions, M. I. T. Press (1956).

    Google Scholar 

  • Surdin, M., 1986 (These Proceedings).

    Google Scholar 

  • Swartz, C. E., The Fundamental Particles, p. 94 ( Addison—Wesley, Reading, Massachusetts, 1965 ).

    Google Scholar 

  • Taylor, G. I.. Proc. Camb. Phil. Soc. 15, 114 (1909).

    Google Scholar 

  • Thomson, J. J., Phil. Mag. Ser. 6, 48, 737 (1924).

    Google Scholar 

  • Thomson, J. J., Phil. Mag. Ser. 6, 50, 1181 (1925).

    Google Scholar 

  • Thomson, J. J., Nature 137, 232 (1936).

    Article  ADS  MATH  Google Scholar 

  • Wadlinger, R. L. P., J. Chem. Educ. 60, 943 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Hunter, G., Wadlinger, R.L.P. (1987). Physical Photons: Theory, Experiment and Implications. In: Honig, W.M., Kraft, D.W., Panarella, E. (eds) Quantum Uncertainties. NATO ASI Series, vol 162. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5386-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5386-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5388-1

  • Online ISBN: 978-1-4684-5386-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics